Displaying 1341 – 1360 of 1698

Showing per page

Robust exponential stability of a class of nonlinear systems

Vojtech Veselý, Danica Rosinová (1998)

Kybernetika

The paper addresses the problem of design of a robust controller for a class of nonlinear uncertain systems to guarantee the prescribed decay rate of exponential stability. The bounded deterministic uncertainties are considered both in a studied system and its input part. The proposed approach does not employ matching conditions.

Robust fault detection of singular LPV systems with multiple time-varying delays

Amir Hossein Hassanabadi, Masoud Shafiee, Vicenç Puig (2016)

International Journal of Applied Mathematics and Computer Science

In this paper, the robust fault detection problem for LPV singular delayed systems in the presence of disturbances and actuator faults is considered. For both disturbance decoupling and actuator fault detection, an unknown input observer (UIO) is proposed. The aim is to compute a residual signal which has minimum sensitivity to disturbances while having maximum sensitivity to faults. Robustness to unknown inputs is formulated in the sense of the H∞ -norm by means of the bounded real lemma (BRL)...

Robust Feedback Control Design for a Nonlinear Wastewater Treatment Model

M. Serhani, N. Raissi, P. Cartigny (2009)

Mathematical Modelling of Natural Phenomena

In this work we deal with the design of the robust feedback control of wastewater treatment system, namely the activated sludge process. This problem is formulated by a nonlinear ordinary differential system. On one hand, we develop a robust analysis when the specific growth function of the bacterium μ is not well known. On the other hand, when also the substrate concentration in the feed stream sin is unknown, we provide an observer of system and propose a design of robust feedback control in...

Robust fractional adaptive control based on the strictly Positive Realness Condition

Samir Ladaci, Abdelfatah Charef, Jean Jacques Loiseau (2009)

International Journal of Applied Mathematics and Computer Science

This paper presents a new approach to robust adaptive control, using fractional order systems as parallel feedforward in the adaptation loop. The problem is that adaptive control systems may diverge when confronted with finite sensor and actuator dynamics, or with parasitic disturbances. One of the classical robust adaptive control solutions to these problems makes use of parallel feedforward and simplified adaptive controllers based on the concept of positive realness. The proposed control scheme...

Robust H control of an uncertain system via a stable decentralized output feedback controller

Ian R. Petersen (2009)

Kybernetika

This paper presents a procedure for constructing a stable decentralized output feedback controller for a class of uncertain systems in which the uncertainty is described by Integral Quadratic Constraints. The controller is constructed to solve a problem of robust H control. The proposed procedure involves solving a set of algebraic Riccati equations of the H control type which are dependent on a number of scaling parameters. By treating the off-diagonal elements of the controller transfer function...

Robust identification of parasitic feedback disturbances for linear lumped parameter systems

Vyacheslav Maksimov, Luciano Pandolfi (2001)

International Journal of Applied Mathematics and Computer Science

We study the problem of identification of an input to a linear finite-dimensional system. We assume that the input has a feedback form, which is related to a problem often encountered in fault detection. The method we use is to embed the identification problem in a class of inverse problems of dynamics for controlled systems. Two algorithms for identification of a feedback matrix based on the method of feedback control with a model are constructed. These algorithms are stable with respect to noise-corrupted...

Robust multisensor fault tolerant model-following MPC design for constrained systems

Alain Yetendje, Maria M. Seron, José A. De Doná (2012)

International Journal of Applied Mathematics and Computer Science

In this paper, a robust fault-tolerant control strategy for constrained multisensor linear systems, subject to sensor faults and in the presence of bounded state and output disturbances, is proposed. The scheme verifies that, for each sensors-estimator combination, suitable residual variables lie inside pre-computed sets and selects a more appropriate combination based on a chosen criterion. An active fault tolerant output feedback controller yields an MPC-based control law and, by means of the...

Robust nonlinear observer design for actuator fault detection in diesel engines

Boulaid Boulkroune, Issam Djemili, Abdel Aitouche, Vincent Cocquempot (2013)

International Journal of Applied Mathematics and Computer Science

This paper is concerned with actuator fault detection in nonlinear systems in the presence of disturbances. A nonlinear unknown input observer is designed and the output estimation error is used as a residual for fault detection. To deal with the problem of high Lipschitz constants, a modified mean-value theorem is used to express the nonlinear error dynamics as a convex combination of known matrices with time-varying coefficients. Moreover, the disturbance attenuation is performed using a modified...

Robust observer design for Sugeno systems with incremental quadratic nonlinearity in the consequent

Hoda Moodi, Mohammad Farrokhi (2013)

International Journal of Applied Mathematics and Computer Science

This paper is concerned with observer design for nonlinear systems that are modeled by T-S fuzzy systems containing parametric and nonparametric uncertainties. Unlike most Sugeno models, the proposed method contains nonlinear functions in the consequent part of the fuzzy IF-THEN rules. This will allow modeling a wider class of systems with smaller modeling errors. The consequent part of each rule contains a linear part plus a nonlinear term, which has an incremental quadratic constraint. This constraint...

Robust observer design for time-delay systems: a Riccati equation approach

Anas Fattouh, Olivier Sename, Jean-Michel Dion (1999)

Kybernetika

In this paper, a method for H observer design for linear systems with multiple delays in state and output variables is proposed. The designing method involves attenuating of the disturbance to a pre-specified level. The observer design requires solving certain algebraic Riccati equation. An example is given in order to illustrate the proposed method.

Robust observer-based finite-time H control designs for discrete nonlinear systems with time-varying delay

Yali Dong, Huimin Wang, Mengxiao Deng (2021)

Kybernetika

This paper investigates the problem of observer-based finite-time H control for the uncertain discrete-time systems with nonlinear perturbations and time-varying delay. The Luenberger observer is designed to measure the system state. The observer-based controller is constructed. By constructing an appropriated Lyapunov-.Krasovskii functional, sufficient conditions are derived to ensure the resulting closed-loop system is H finite-time bounded via observer-based control. The observer-based controller...

Currently displaying 1341 – 1360 of 1698