Displaying 201 – 220 of 306

Showing per page

Passivity based stabilization of non-minimum phase nonlinear systems

Juan C. Travieso-Torres, Manuel A. Duarte-Mermoud, Petr Zagalak (2009)

Kybernetika

A cascade scheme for passivity-based stabilization of a wide class of nonlinear systems is proposed in this paper. Starting from the definitions and basic concepts of passivity-based stabilization via feedback (which are applicable to minimum phase nonlinear systems expressed in their normal forms) a cascade stabilization scheme is proposed for minimum and non-minimum phase nonlinear systems where the constraint of stable zero dynamics imposed by previous stabilization approaches is abandoned. Simulation...

Peak solutions for an elliptic system of FitzHugh-Nagumo type

Edward Norman Dancer, Shusen Yan (2003)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

The aim of this paper is to study the existence of various types of peak solutions for an elliptic system of FitzHugh-Nagumo type. We prove that the system has a single peak solution, which concentrates near the boundary of the domain. Under some extra assumptions, we also construct multi-peak solutions with all the peaks near the boundary, and a single peak solution with its peak near an interior point of the domain.

Planning identification experiments for cell signaling pathways: An NFκB case study

Krzysztof Fujarewicz (2010)

International Journal of Applied Mathematics and Computer Science

Mathematical modeling of cell signaling pathways has become a very important and challenging problem in recent years. The importance comes from possible applications of obtained models. It may help us to understand phenomena appearing in single cells and cell populations on a molecular level. Furthermore, it may help us with the discovery of new drug therapies. Mathematical models of cell signaling pathways take different forms. The most popular way of mathematical modeling is to use a set of nonlinear...

Realization of multivariable nonlinear systems via the approaches of differential forms and differential algebra

Jiangfeng Zhang, Claude H. Moog, Xiao Hua Xia (2010)

Kybernetika

In this paper differential forms and differential algebra are applied to give a new definition of realization for multivariable nonlinear systems consistent with the linear realization theory. Criteria for the existence of realization and the definition of minimal realization are presented. The relations of minimal realization and accessibility and finally the computation of realizations are also discussed in this paper.

Reconfigurability analysis for reliable fault-tolerant control design

Ahmed Khelassi, Didier Theilliol, Philippe Weber (2011)

International Journal of Applied Mathematics and Computer Science

In this paper the integration of reliability evaluation in reconfigurability analysis of a fault-tolerant control system is considered. The aim of this work is to contribute to reliable fault-tolerant control design. The admissibility of control reconfigurability is analyzed with respect to reliability requirements. This analysis shows the relationship between reliability and control reconfigurability defined generally through Gramian controllability. An admissible solution for reconfigurability...

Regular syntheses and solutions to discontinuous ODEs

Alessia Marigo, Benedetto Piccoli (2002)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we analyze several concepts of solution to discontinuous ODEs in relation to feedbacks generated by optimal syntheses. Optimal trajectories are called Stratified Solutions in case of regular synthesis in the sense of Boltyanskii–Brunovsky. We introduce a concept of solution called Krasowskii Cone Robust that characterizes optimal trajectories for minimum time on the plane and for general problems under suitable assumptions.

Regular syntheses and solutions to discontinuous ODEs

Alessia Marigo, Benedetto Piccoli (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we analyze several concepts of solution to discontinuous ODEs in relation to feedbacks generated by optimal syntheses. Optimal trajectories are called Stratified Solutions in case of regular synthesis in the sense of Boltyanskii-Brunovsky. We introduce a concept of solution called Krasowskii Cone Robust that characterizes optimal trajectories for minimum time on the plane and for general problems under suitable assumptions.

Currently displaying 201 – 220 of 306