Displaying 61 – 80 of 306

Showing per page

Construction of algebraic and difference equations with a prescribed solution space

Lazaros Moysis, Nicholas P. Karampetakis (2017)

International Journal of Applied Mathematics and Computer Science

This paper studies the solution space of systems of algebraic and difference equations, given as auto-regressive (AR) representations A(σ)β(k) = 0, where σ denotes the shift forward operator and A(σ) is a regular polynomial matrix. The solution space of such systems consists of forward and backward propagating solutions, over a finite time horizon. This solution space can be constructed from knowledge of the finite and infinite elementary divisor structure of A(σ). This work deals with the inverse...

Continuous dependence on parameters and boundedness of solutions to a hysteresis system

Alexander M. Kamachkin, Dmitriy K. Potapov, Victoria V. Yevstafyeva (2022)

Applications of Mathematics

We analyze an ordinary differential system with a hysteresis-relay nonlinearity in two cases when the system is autonomous or nonautonomous. Sufficient conditions for both the continuous dependence on the system parameters and the boundedness of the solutions to the system are obtained. We give a supporting example for the autonomous system.

Continuous-time periodic systems in H 2 and H . Part I: Theoretical aspects

Patrizio Colaneri (2000)

Kybernetika

The paper is divided in two parts. In the first part a deep investigation is made on some system theoretical aspects of periodic systems and control, including the notions of H 2 and H norms, the parametrization of stabilizing controllers, and the existence of periodic solutions to Riccati differential equations and/or inequalities. All these aspects are useful in the second part, where some parametrization and control problems in H 2 and H are introduced and solved.

Controllability of linear impulsive matrix Lyapunov differential systems with delays in the control function

Vijayakumar S. Muni, Raju K. George (2018)

Kybernetika

In this paper, we establish the controllability conditions for a finite-dimensional dynamical control system modelled by a linear impulsive matrix Lyapunov ordinary differential equations having multiple constant time-delays in control for certain classes of admissible control functions. We characterize the controllability property of the system in terms of matrix rank conditions and are easy to verify. The obtained results are applicable for both autonomous (time-invariant) and non-autonomous (time-variant)...

Controlling a non-homogeneous Timoshenko beam with the aid of the torque

Grigory M. Sklyar, Grzegorz Szkibiel (2013)

International Journal of Applied Mathematics and Computer Science

Considered is the control and stabilizability of a slowly rotating non-homogeneous Timoshenko beam with the aid of a torque. It turns out that the beam is (approximately) controllable with the aid of the torque if and only if it is (approximately) controllable. However, the controllability problem appears to be a side-effect while studying the stabilizability. To build a stabilizing control one needs to go through the methods of correcting the operators with functionals so that they have finally...

Decomposition of a second-order linear time-varying differential system as the series connection of two first order commutative pairs

Mehmet Emir Koksal (2016)

Open Mathematics

Necessary and sufficiently conditions are derived for the decomposition of a second order linear time- varying system into two cascade connected commutative first order linear time-varying subsystems. The explicit formulas describing these subsystems are presented. It is shown that a very small class of systems satisfies the stated conditions. The results are well verified by simulations. It is also shown that its cascade synthesis is less sensitive to numerical errors than the direct simulation...

Currently displaying 61 – 80 of 306