Displaying 221 – 240 of 344

Showing per page

An adaptive output feedback motion tracking controller for robot manipulators: uniform global asymptotic stability and experimentation

Antonio Yarza, Victor Santibanez, Javier Moreno-Valenzuela (2013)

International Journal of Applied Mathematics and Computer Science

This paper deals with two important practical problems in motion control of robot manipulators: the measurement of joint velocities, which often results in noisy signals, and the uncertainty of parameters of the dynamic model. Adaptive output feedback controllers have been proposed in the literature in order to deal with these problems. In this paper, we prove for the first time that Uniform Global Asymptotic Stability (UGAS) can be obtained from an adaptive output feedback tracking controller,...

An agent-oriented hierarchic strategy for solving inverse problems

Maciej Smołka, Robert Schaefer, Maciej Paszyński, David Pardo, Julen Álvarez-Aramberri (2015)

International Journal of Applied Mathematics and Computer Science

The paper discusses the complex, agent-oriented hierarchic memetic strategy (HMS) dedicated to solving inverse parametric problems. The strategy goes beyond the idea of two-phase global optimization algorithms. The global search performed by a tree of dependent demes is dynamically alternated with local, steepest descent searches. The strategy offers exceptionally low computational costs, mainly because the direct solver accuracy (performed by the hp-adaptive finite element method) is dynamically...

An algebraic framework for linear identification

Michel Fliess, Hebertt Sira-Ramírez (2003)

ESAIM: Control, Optimisation and Calculus of Variations

A closed loop parametrical identification procedure for continuous-time constant linear systems is introduced. This approach which exhibits good robustness properties with respect to a large variety of additive perturbations is based on the following mathematical tools: (1) module theory; (2) differential algebra; (3) operational calculus. Several concrete case-studies with computer simulations demonstrate the efficiency of our on-line identification scheme.

An algebraic framework for linear identification

Michel Fliess, Hebertt Sira–Ramírez (2010)

ESAIM: Control, Optimisation and Calculus of Variations

A closed loop parametrical identification procedure for continuous-time constant linear systems is introduced. This approach which exhibits good robustness properties with respect to a large variety of additive perturbations is based on the following mathematical tools: (1) module theory; (2) differential algebra; (3) operational calculus. Several concrete case-studies with computer simulations demonstrate the efficiency of our on-line identification scheme.

An algorithm for reducing the dimension and size of a sample for data exploration procedures

Piotr Kulczycki, Szymon Łukasik (2014)

International Journal of Applied Mathematics and Computer Science

The paper deals with the issue of reducing the dimension and size of a data set (random sample) for exploratory data analysis procedures. The concept of the algorithm investigated here is based on linear transformation to a space of a smaller dimension, while retaining as much as possible the same distances between particular elements. Elements of the transformation matrix are computed using the metaheuristics of parallel fast simulated annealing. Moreover, elimination of or a decrease in importance...

An analytical method for well-formed workflow/Petri net verification of classical soundness

Julio Clempner (2014)

International Journal of Applied Mathematics and Computer Science

In this paper we consider workflow nets as dynamical systems governed by ordinary difference equations described by a particular class of Petri nets. Workflow nets are a formal model of business processes. Well-formed business processes correspond to sound workflow nets. Even if it seems necessary to require the soundness of workflow nets, there exist business processes with conditional behavior that will not necessarily satisfy the soundness property. In this sense, we propose an analytical method...

An application of the Fourier transform to optimization of continuous 2-D systems

Vitali Dymkou, Michael Dymkov (2003)

International Journal of Applied Mathematics and Computer Science

This paper uses the theory of entire functions to study the linear quadratic optimization problem for a class of continuous 2D systems. We show that in some cases optimal control can be given by an analytical formula. A simple method is also proposed to find an approximate solution with preassigned accuracy. Some application to the 1D optimization problem is presented, too. The obtained results form a theoretical background for the design problem of optimal controllers for relevant processes.

An approach to the analysis of observability and controllability in nonlinear systems via linear methods

Alexey Zhirabok, Alexey Shumsky (2012)

International Journal of Applied Mathematics and Computer Science

The paper is devoted to the problem of observability and controllability analysis in nonlinear dynamic systems. Both continuous- and discrete-time systems described by nonlinear differential or difference equations, respectively, are considered. A new approach is developed to solve this problem whose features include (i) consideration of systems with non-differentiable nonlinearities and (ii) the use of relatively simple linear methods which may be supported by existing programming systems, e.g.,...

An asymptotic state observer for a class of nonlinear delay systems

Alfredo Germani, Costanzo Manes, Pierdomenico Pepe (2001)

Kybernetika

The problem of state reconstruction from input and output measurements for nonlinear time delay systems is studied in this paper and a state observer is proposed that is easy to implement and, under suitable assumptions on the system and on the input function, gives exponential observation error decay. The proposed observer is itself a delay system and can be classified as an identity observer, in that it is such that if at a given time instant the system and observer states coincide, on a suitable...

An elastic membrane with an attached non-linear thermoelastic rod

Werner Horn, Jan Sokołowski (2002)

International Journal of Applied Mathematics and Computer Science

We study a thermo-mechanical system consisting of an elastic membrane to which a shape-memory rod is glued. The slow movements of the membrane are controlled by the motions of the attached rods. A quasi-static model is used. We include the elastic feedback of the membrane on the rods. This results in investigating an elliptic boundary value problem in a domain Ω ⊂ R^2 with a cut, coupled with non-linear equations for the vertical motions of the rod and the temperature on the rod. We prove the existence...

An example of the knowledge based controller-design and evaluation.

Oto Tezak (1999)

Mathware and Soft Computing

Knowledge based controller for a balance control model is presented in this paper. The design of the controller was based on the human control of the same process. Developed controller is tested by means of simulation and operation on the laboratory balance control model. The simulation results of the controller as well as a statistical description of the experiments with developed controller and human control is presented in the paper. Verification is based on experiments with an intelligent controller...

Currently displaying 221 – 240 of 344