Displaying 641 – 660 of 2294

Showing per page

Derivation of effective transfer function models by input, output variables selection

Nicos Karcanias, Konstantinos G. Vafiadis (2002)

Kybernetika

Transfer function models used for early stages of design are large dimension models containing all possible physical inputs, outputs. Such models may be badly conditioned and possibly degenerate. The problem considered here is the selection of maximal cardinality subsets of the physical input, output sets, such as the resulting model is nondegenerate and satisfies additional properties such as controllability and observability and avoids the existence of high order infinite zeros. This problem is...

Derivation of physically motivated constraints for efficient interval simulations applied to the analysis of uncertain dynamical systems

Mareile Freihold, Eberhard P. Hofer (2009)

International Journal of Applied Mathematics and Computer Science

Interval arithmetic techniques such as VALENCIA-IVP allow calculating guaranteed enclosures of all reachable states of continuous-time dynamical systems with bounded uncertainties of both initial conditions and system parameters. Considering the fact that, in naive implementations of interval algorithms, overestimation might lead to unnecessarily conservative results, suitable consistency tests are essential to obtain the tightest possible enclosures. In this contribution, a general framework for...

Derived cones to reachable sets of a nonlinear differential inclusion

Aurelian Cernea (2014)

Mathematica Bohemica

We consider a nonlinear differential inclusion defined by a set-valued map with nonconvex values and we prove that the reachable set of a certain variational inclusion is a derived cone in the sense of Hestenes to the reachable set of the initial differential inclusion. In order to obtain the continuity property in the definition of a derived cone we use a continuous version of Filippov's theorem for solutions of our differential inclusion. As an application, in finite dimensional spaces, we obtain...

Descriptor fractional linear systems with regular pencils

Tadeusz Kaczorek (2013)

International Journal of Applied Mathematics and Computer Science

Methods for finding solutions of the state equations of descriptor fractional discrete-time and continuous-time linear systems with regular pencils are proposed. The derivation of the solution formulas is based on the application of the Z transform, the Laplace transform and the convolution theorems. Procedures for computation of the transition matrices are proposed. The efficiency of the proposed methods is demonstrated on simple numerical examples.

Design of a model following control system for nonlinear descriptor system in discrete time

Shujing Wu, Shigenori Okubo, Dazhong Wang (2008)

Kybernetika

A model following control system (MFCS) can output general signals following the desired ones. In this paper, a method of nonlinear MFCS will be extended to be a nonlinear descriptor system in discrete time. The nonlinear system studied in this paper has the property of norm constraint | | f ( v ( k ) ) | | α + β | | v ( k ) | | γ , where α 0 , β 0 , 0 γ < 1 . In this case, a new criterion is proposed to ensure the internal states be stable.

Design of a multivariable neural controller for control of a nonlinear MIMO plant

Stanisław Bańka, Paweł Dworak, Krzysztof Jaroszewski (2014)

International Journal of Applied Mathematics and Computer Science

The paper presents the training problem of a set of neural nets to obtain a (gain-scheduling, adaptive) multivariable neural controller for control of a nonlinear MIMO dynamic process represented by a mathematical model of Low-Frequency (LF) motions of a drillship over the drilling point at the sea bottom. The designed neural controller contains a set of neural nets that determine values of its parameters chosen on the basis of two measured auxiliary signals. These are the ship's current forward...

Design of an adaptive controller of LQG type: spline-based approach

Tatiana V. Guy, Miroslav Kárný (2000)

Kybernetika

The paper presents an alternative approach to the design of a hybrid adaptive controller of Linear Quadratic Gaussian (LQG) type for linear stochastic controlled system. The approach is based on the combination standard building blocks of discrete LQG adaptive controller with the non-standard technique of modelling of a controlled system and spline approximation of involved signals. The method could be of interest for control of systems with complex models, in particular distributed parameter systems....

Design of linear feedback for bilinear control systems

Vasiliy Belozyorov (2002)

International Journal of Applied Mathematics and Computer Science

Sufficient conditions for the conditional stability of trivial solutions for quadratic systems of ordinary differential equations are obtained. These conditions are then used to design linear control laws on the output for a bilinear system of any order. In the case of a homogeneous system, a domain of the conditional stability is also indicated (it is a cone). Some examples are given.

Design of microprogrammed controllers to be implemented in FPGAs

Remigiusz Wiśniewski, Alexander Barkalov, Larisa Titarenko, Wolfgang A. Halang (2011)

International Journal of Applied Mathematics and Computer Science

In the article we propose a new design method for microprogrammed controllers. The traditional structure is improved by modifying internal modules and connections. Such a solution allows reducing the total number of logic elements needed for implementation in programmable structures, especially Field Programmable Gate Arrays (FPGAs). Detailed results of experiments show that on the average the application of the proposed methods yields up to 30% savings as far as the destination device is considered....

Design of passive fault-tolerant controllers of a quadrotor based on sliding mode theory

Abdel-Razzak Merheb, Hassan Noura, François Bateman (2015)

International Journal of Applied Mathematics and Computer Science

In this paper, sliding mode control is used to develop two passive fault tolerant controllers for an AscTec Pelican UAV quadrotor. In the first approach, a regular sliding mode controller (SMC) augmented with an integrator uses the robustness property of variable structure control to tolerate partial actuator faults. The second approach is a cascaded sliding mode controller with an inner and outer SMC loops. In this configuration, faults are tolerated in the fast inner loop controlling the velocity...

Currently displaying 641 – 660 of 2294