On the properties of solutions to the Goursat--Darboux problem with boundary and distributed controls.
This paper deals with the problem of tracking a reference signal while maintaining the stability of the closed loop system for linear time invariant systems with delays in the states. We show that conditions for the existence of a solution to this problem (the so-called regulation problem), similar to those known for the case of delay-free linear systems, may be given. We propose a solution for both the state and error feedback regulation.
This paper establishes the equivalence between systems described by a single first-order hyperbolic partial differential equation and systems described by integral delay equations. System-theoretic results are provided for both classes of systems (among them converse Lyapunov results). The proposed framework can allow the study of discontinuous solutions for nonlinear systems described by a single first-order hyperbolic partial differential equation under the effect of measurable inputs acting on...
This paper deals with a multiobjective control problem for nonlinear discrete time systems. The problem consists of finding a control strategy which minimizes a number of performance indexes subject to state and control constraints. A solution to this problem through the Receding Horizon approach is proposed. Under standard assumptions, it is shown that the resulting control law guarantees closed-loop stability. The proposed method is also used to provide a robustly stabilizing solution to the problem...
This work concerns the stability analysis of a non-linear system controlled by a fuzzy T-S control law. It is shown that the closed loop system is in general expressed by a T-S fuzzy system composed of rules with affine linear systems in their consequent parts. The stability of affine T-S systems is then investigated for a special case using as an example the regulation problem of single link robot arm. Stability conditions are derived using the indirect and direct Lyapunov method and simulation...
In this paper, we consider some classes of bilinear systems. We give sufficient condition for the asymptotic stabilization by using a positive and a negative feedbacks.
Let be a smooth connected complete manifold of dimension , and be a smooth nonholonomic distribution of rank on . We prove that if there exists a smooth Riemannian metric on1for which no nontrivial singular path is minimizing, then there exists a smooth repulsive stabilizing section of on . Moreover, in dimension three, the assumption of the absence of singular minimizing horizontal paths can be dropped in the Martinet case. The proofs are based on the study, using specific results of...
In this paper, we treat the class of nonlinear uncertain dynamic systems that was considered in [3,2,1,4]. We consider continuous-time dynamical systems whose nominal part is linear and whose uncertain part is norm-bounded. We study the problems of state observation and obtaining stabilizing controller for uncertain nonlinear systems, where the uncertainties are characterized by known bounds.
In this paper, the static output feedback stabilization (SOFS) of deterministic finite automata (DFA) via the semi-tensor product (STP) of matrices is investigated. Firstly, the matrix expression of Moore-type automata is presented by using STP. Here the concept of the set of output feedback feasible events (OFFE) is introduced and expressed in the vector form, and the stabilization of DFA is defined in the sense of static output feedback (SOF) control. Secondly, SOFS problem of DFA is investigated...
The disturbance decoupling problem is studied for linear delay systems. The structural approach is used to design a decoupling precompensator. The realization of the given precompensator by static state feedback is studied. Using various structural and geometric tools, a detailed description of the feedback is given, in particular, derivative of the delayed disturbance can be needed in the realization of the precompensator.
We are extending to linear recurrent codes, i.e., to time-varying convolutional codes, most of the classic structural properties of fixed convolutional codes. We are also proposing a new connection between fixed convolutional codes and linear block codes. These results are obtained thanks to a module-theoretic framework which has been previously developed for linear control.
We are extending to linear recurrent codes, i.e., to time-varying convolutional codes, most of the classic structural properties of fixed convolutional codes. We are also proposing a new connection between fixed convolutional codes and linear block codes. These results are obtained thanks to a module-theoretic framework which has been previously developed for linear control.