Displaying 141 – 160 of 802

Showing per page

Continuity of solutions of Riccati equations for the discrete-time JLQP

Adam Czornik, Andrzej Świerniak (2002)

International Journal of Applied Mathematics and Computer Science

The continuity of the solutions of difference and algebraic coupled Riccati equations for the discrete-time Markovian jump linear quadratic control problem as a function of coefficients is verified. The line of reasoning goes through the use of the minimum property formulated analogously to the one for coupled continuous Riccati equations presented by Wonham and a set of comparison theorems.

Continuous feedback stabilization for a class of affine stochastic nonlinear systems

Mohamed Oumoun, Lahcen Maniar, Abdelghafour Atlas (2020)

Kybernetika

We investigate the state feedback stabilization, in the sense of weak solution, of nonlinear stochastic systems when the drift is quadratic in the control and the diffusion term is affine in the control. Based on the generalised stochastic Lyapunov theorem, we derive the necessary conditions and the sufficient conditions, respectively, for the global asymptotic stabilization in probability by a continuous feedback explicitly computed. The interest of this work is that the existing control methods...

Control a state-dependent dynamic graph to a pre-specified structure

Fei Chen, Zengqiang Chen, Zhongxin Liu, Zhuzhi Yuan (2009)

Kybernetika

Recent years have witnessed an increasing interest in coordinated control of distributed dynamic systems. In order to steer a distributed dynamic system to a desired state, it often becomes necessary to have a prior control over the graph which represents the coupling among interacting agents. In this paper, a simple but compelling model of distributed dynamical systems operating over a dynamic graph is considered. The structure of the graph is assumed to be relied on the underling system's states....

Control Lyapunov functions and stabilization by means of continuous time-varying feedback

Iasson Karafyllis, John Tsinias (2009)

ESAIM: Control, Optimisation and Calculus of Variations

For a general time-varying system, we prove that existence of an “Output Robust Control Lyapunov Function” implies existence of continuous time-varying feedback stabilizer, which guarantees output asymptotic stability with respect to the resulting closed-loop system. The main results of the present work constitute generalizations of a well known result due to Coron and Rosier [J. Math. Syst. Estim. Control 4 (1994) 67–84] concerning stabilization of autonomous systems by means of time-varying periodic...

Control Lyapunov functions and stabilization by means of continuous time-varying feedback

Iasson Karafyllis, John Tsinias (2008)

ESAIM: Control, Optimisation and Calculus of Variations

For a general time-varying system, we prove that existence of an “Output Robust Control Lyapunov Function” implies existence of continuous time-varying feedback stabilizer, which guarantees output asymptotic stability with respect to the resulting closed-loop system. The main results of the present work constitute generalizations of a well known result due to Coron and Rosier [J. Math. Syst. Estim. Control4 (1994) 67–84] concerning stabilization of autonomous systems by means of time-varying...

Control Lyapunov functions for homogeneous “Jurdjevic-Quinn” systems

ludovic faubourg, jean-baptiste pomet (2010)

ESAIM: Control, Optimisation and Calculus of Variations

This paper presents a method to design explicit control Lyapunov functions for affine and homogeneous systems that satisfy the so-called “Jurdjevic-Quinn conditions”. For these systems a positive definite function V0 is known that can only be made non increasing by feedback. We describe how a control Lyapunov function can be obtained via a deformation of this “weak” Lyapunov function. Some examples are presented, and the linear quadratic situation is treated as an illustration.

Control of a class of chaotic systems by a stochastic delay method

Lan Zhang, Cheng Jian Zhang, Dongming Zhao (2010)

Kybernetika

A delay stochastic method is introduced to control a certain class of chaotic systems. With the Lyapunov method, a suitable kind of controllers with multiplicative noise is designed to stabilize the chaotic state to the equilibrium point. The method is simple and can be put into practice. Numerical simulations are provided to illustrate the effectiveness of the proposed controllable conditions.

Control of distributed delay systems with uncertainties: a generalized Popov theory approach

Dan Ivanescu, Silviu-Iulian Niculescu, Jean-Michel Dion, Luc Dugard (2001)

Kybernetika

The paper deals with the generalized Popov theory applied to uncertain systems with distributed time delay. Sufficient conditions for stabilizing this class of delayed systems as well as for γ -attenuation achievement are given in terms of algebraic properties of a Popov system via a Liapunov–Krasovskii functional. The considered approach is new in the context of distributed linear time-delay systems and gives some interesting interpretations of H memoryless control problems in terms of Popov triplets...

Control of Traveling Solutions in a Loop-Reactor

Y. Smagina, M. Sheintuch (2010)

Mathematical Modelling of Natural Phenomena

We consider the stabilization of a rotating temperature pulse traveling in a continuous asymptotic model of many connected chemical reactors organized in a loop with continuously switching the feed point synchronously with the motion of the pulse solution. We use the switch velocity as control parameter and design it to follow the pulse: the switch velocity is updated at every step on-line using the discrepancy between the temperature at the front...

Controllable systems of partial differential equations

František Tumajer (1986)

Aplikace matematiky

In the paper definitions of various kinds of stability and boundedness of solutions of linear controllable systems of partial differential equations are introduced and their interconnections are derived. By means of Ljapunov's functions theorems are proved which give necessary and sufficient conditions for particular kinds of stability and boundedness of the solutions.

Controlled functional differential equations : approximate and exact asymptotic tracking with prescribed transient performance

Eugene P. Ryan, Chris J. Sangwin, Philip Townsend (2009)

ESAIM: Control, Optimisation and Calculus of Variations

A tracking problem is considered in the context of a class 𝒮 of multi-input, multi-output, nonlinear systems modelled by controlled functional differential equations. The class contains, as a prototype, all finite-dimensional, linear, m -input, m -output, minimum-phase systems with sign-definite “high-frequency gain”. The first control objective is tracking of reference signals r by the output y of any system in 𝒮 : given λ 0 , construct a feedback strategy which ensures that, for every r (assumed bounded...

Controlled functional differential equations: approximate and exact asymptotic tracking with prescribed transient performance

Eugene P. Ryan, Chris J. Sangwin, Philip Townsend (2008)

ESAIM: Control, Optimisation and Calculus of Variations

A tracking problem is considered in the context of a class 𝒮 of multi-input, multi-output, nonlinear systems modelled by controlled functional differential equations. The class contains, as a prototype, all finite-dimensional, linear, m-input, m-output, minimum-phase systems with sign-definite “high-frequency gain". The first control objective is tracking of reference signals r by the output y of any system in 𝒮 : given λ 0 , construct a feedback strategy which ensures that, for every r (assumed bounded with...

Currently displaying 141 – 160 of 802