The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Previous Page 2

Displaying 21 – 29 of 29

Showing per page

Analysis of gradient flow of a regularized Mumford-Shah functional for image segmentation and image inpainting

Xiaobing Feng, Andreas Prohl (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper studies the gradient flow of a regularized Mumford-Shah functional proposed by Ambrosio and Tortorelli (1990, 1992) for image segmentation, and adopted by Esedoglu and Shen (2002) for image inpainting. It is shown that the gradient flow with L 2 × L initial data possesses a global weak solution, and it has a unique global in time strong solution, which has at most finite number of point singularities in the space-time, when the initial data are in H 1 × H 1 L . A family of fully discrete approximation...

Analysis of gradient flow of a regularized Mumford-Shah functional for image segmentation and image inpainting

Xiaobing Feng, Andreas Prohl (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper studies the gradient flow of a regularized Mumford-Shah functional proposed by Ambrosio and Tortorelli (1990, 1992) for image segmentation, and adopted by Esedoglu and Shen (2002) for image inpainting. It is shown that the gradient flow with L2 x L∞ initial data possesses a global weak solution, and it has a unique global in time strong solution, which has at most finite number of point singularities in the space-time, when the initial data are in H1 x H1 ∩ L∞. A family of fully...

Analysis of total variation flow and its finite element approximations

Xiaobing Feng, Andreas Prohl (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We study the gradient flow for the total variation functional, which arises in image processing and geometric applications. We propose a variational inequality weak formulation for the gradient flow, and establish well-posedness of the problem by the energy method. The main idea of our approach is to exploit the relationship between the regularized gradient flow (characterized by a small positive parameter ε , and the minimal surface flow [21] and the prescribed mean curvature flow [16]. Since our...

Analysis of total variation flow and its finite element approximations

Xiaobing Feng, Andreas Prohl (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We study the gradient flow for the total variation functional, which arises in image processing and geometric applications. We propose a variational inequality weak formulation for the gradient flow, and establish well-posedness of the problem by the energy method. The main idea of our approach is to exploit the relationship between the regularized gradient flow (characterized by a small positive parameter ε, see (1.7)) and the minimal surface flow [21] and the prescribed mean curvature flow [16]. Since...

Application of the partitioning method to specific Toeplitz matrices

Predrag Stanimirović, Marko Miladinović, Igor Stojanović, Sladjana Miljković (2013)

International Journal of Applied Mathematics and Computer Science

We propose an adaptation of the partitioning method for determination of the Moore-Penrose inverse of a matrix augmented by a block-column matrix. A simplified implementation of the partitioning method on specific Toeplitz matrices is obtained. The idea for observing this type of Toeplitz matrices lies in the fact that they appear in the linear motion blur models in which blurring matrices (representing the convolution kernels) are known in advance. The advantage of the introduced method is a significant...

Application of the random field theory in PET imaging - injection dose optimization

Jiří Dvořák, Jiří Boldyš, Magdaléna Skopalová, Otakar Bělohlávek (2013)

Kybernetika

This work presents new application of the random field theory in medical imaging. Results from both integral geometry and random field theory can be used to detect locations with significantly increased radiotracer uptake in images from positron emission tomography (PET). The assumptions needed to use these results are verified on a set of real and simulated phantom images. The proposed method of detecting activation (locations with increased radiotracer concentration) is used to quantify the quality...

Currently displaying 21 – 29 of 29

Previous Page 2