Displaying 161 – 180 of 961

Showing per page

Bi-infinitary codes

Do Long Van, D. G. Thomas, K. G. Subramanian, Rani Siromoney (1990)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

Binomial-Poisson entropic inequalities and the M/M/∞ queue

Djalil Chafaï (2006)

ESAIM: Probability and Statistics

This article provides entropic inequalities for binomial-Poisson distributions, derived from the two point space. They appear as local inequalities of the M/M/∞ queue. They describe in particular the exponential dissipation of Φ-entropies along this process. This simple queueing process appears as a model of “constant curvature”, and plays for the simple Poisson process the role played by the Ornstein-Uhlenbeck process for Brownian Motion. Some of the inequalities are recovered by semi-group ...

Bound on extended f -divergences for a variety of classes

Pietro Cerone, Sever Silvestru Dragomir, Ferdinand Österreicher (2004)

Kybernetika

The concept of f -divergences was introduced by Csiszár in 1963 as measures of the ‘hardness’ of a testing problem depending on a convex real valued function f on the interval [ 0 , ) . The choice of this parameter f can be adjusted so as to match the needs for specific applications. The definition and some of the most basic properties of f -divergences are given and the class of χ α -divergences is presented. Ostrowski’s inequality and a Trapezoid inequality are utilized in order to prove bounds for an extension...

Bounds for f -divergences under likelihood ratio constraints

Sever Silvestru Dragomir (2003)

Applications of Mathematics

In this paper we establish an upper and a lower bound for the f -divergence of two discrete random variables under likelihood ratio constraints in terms of the Kullback-Leibler distance. Some particular cases for Hellinger and triangular discimination, χ 2 -distance and Rényi’s divergences, etc. are also considered.

Bounds on the information divergence for hypergeometric distributions

Peter Harremoës, František Matúš (2020)

Kybernetika

The hypergeometric distributions have many important applications, but they have not had sufficient attention in information theory. Hypergeometric distributions can be approximated by binomial distributions or Poisson distributions. In this paper we present upper and lower bounds on information divergence. These bounds are important for statistical testing and for a better understanding of the notion of exchangeability.

Calculation of the detection properties in the binary symmetrical channel

Rychtář, Adam, Klapka, Štěpán, Kárná, Lucie (2021)

Programs and Algorithms of Numerical Mathematics

One of the important parts of railway signalling systems design is the safety of communication, achievable - among others - with the error detecting code. Getting evidence of quantitative safety targets, especially the probability of undetected error of the code, is a surprisingly complicated issue. We've analysed 2048 irreducible self-adjoint generator polynomials of the degree 32. More than 70 of these have a maximum probability of failure lower than the standard codes generally used. In this...

Canonical distributions and phase transitions

K.B. Athreya, J.D.H. Smith (2000)

Discussiones Mathematicae Probability and Statistics

Entropy maximization subject to known expected values is extended to the case where the random variables involved may take on positive infinite values. As a result, an arbitrary probability distribution on a finite set may be realized as a canonical distribution. The Rényi entropy of the distribution arises as a natural by-product of this realization. Starting with the uniform distributionon a proper subset of a set, the canonical distribution of equilibriumstatistical mechanics may be used to exhibit...

Capacity bounds for the CDMA system and a neural network: a moderate deviations approach

Matthias Löwe, Franck Vermet (2009)

ESAIM: Probability and Statistics

We study two systems that are based on sums of weakly dependent Bernoulli random variables that take values ± 1 with equal probabilities. We show that already one step of the so-called soft decision parallel interference cancellation, used in the third generation of mobile telecommunication CDMA, is able to considerably increase the number of users such a system can host. We also consider a variant of the well-known Hopfield model of neural networks. We show that this variant proposed by Amari...

Currently displaying 161 – 180 of 961