The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 81 – 100 of 123

Showing per page

Sur les unités d’une extension galoisienne non abélienne de degré p q du corps des rationnels p et q nombres premiers impairs

Nicole Moser (1979)

Annales de l'institut Fourier

Soit K / Q une extension galoisienne non abélienne, de degré p q , de groupe G . On étudie dans cet article la structure du groupe des unités U K de K , en tant que module sur l’algèbre Z [ G ] . Cela permet de donner quelques propriétés arithmétiques de K , comme la détermination des images de U K par les applications normes sur les sous-corps de K , la participation de p au nombre de classes de K , et des conditions nécessaires d’existence d’une unité de Minkowski dans K .

The class number one problem for some non-abelian normal CM-fields of degree 24

F. Lemmermeyer, S. Louboutin, R. Okazaki (1999)

Journal de théorie des nombres de Bordeaux

We determine all the non-abelian normal CM-fields of degree 24 with class number one, provided that the Galois group of their maximal real subfields is isomorphic to 𝒜 4 , the alternating group of degree 4 and order 12 . There are two such fields with Galois group 𝒜 4 × 𝒞 2 (see Theorem 14) and at most one with Galois group SL 2 ( 𝔽 3 ) (see Theorem 18); if the generalized Riemann hypothesis is true, then this last field has class number 1 .

Currently displaying 81 – 100 of 123