The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Caccioppoli estimates are instrumental in virtually all analytic aspects of the theory of partial differential equations, linear and nonlinear. And there is always something new to add to these estimates. We emphasize the fundamental role of the natural domain of definition of a given differential operator and the associated weak solutions. However, we depart from this usual setting (energy estimates) and move into the realm of the so-called very weak solutions where important new applications lie....
Dans cet article, on considère les opérateurs différentiels , où et sont deux fonctions mesurables, bornées et accrétives, et . Les résultats principaux portent sur les propriétés fonctionnelles de , de sa racine carrée, avec applications à l’équation elliptique sur . On démontre que est un opérateur de Calderón-Zygmund qui dépend analytiquement du couple . Les estimations ponctuelles optimales sur le noyau du semi-groupe et le calcul fonctionnel permettent de développer une théorie...
We consider linear elliptic problems with variable coefficients, which may sharply change values and have a complex behavior in the domain. For these problems, a new combined discretization-modeling strategy is suggested and studied. It uses a sequence of simplified models, approximating the original one with increasing accuracy. Boundary value problems generated by these simplified models are solved numerically, and the approximation and modeling errors are estimated by a posteriori estimates of...
We consider linear elliptic problems with variable coefficients, which may sharply change values and have a complex behavior in the domain. For these problems, a new combined discretization-modeling strategy is suggested and studied. It uses a sequence of simplified models, approximating the original one with increasing accuracy. Boundary value problems generated by these simplified models are solved numerically, and the approximation and modeling errors are estimated by a posteriori estimates of...
We consider linear elliptic problems with variable coefficients, which may sharply change values and have a complex behavior in the domain. For these problems, a new combined discretization-modeling strategy is suggested and studied. It uses a sequence of simplified models, approximating the original one with increasing accuracy. Boundary value problems generated by these simplified models are solved numerically, and the approximation and modeling errors are estimated by a posteriori estimates of...
We prove Kato's conjecture for second order elliptic differential operators on an open set in dimension 1 with arbitrary boundary conditions. The general case reduces to studying the operator T = - d/dx a(x) d/dx on an interval, when a(x) is a bounded and accretive function. We show for the latter situation that the domain of T is spanned by an unconditional basis of wavelets with cancellation properties that compensate the action of the non-regular function a(x).
We consider the simplest form of a second order, linear, degenerate, elliptic equation with divergence structure in the plane. Under an integrability condition on the degenerate function, we prove that the solutions are continuous.
We give some counterexamples concerning the regularity of the first (resp. second) derivatives of solutions of linear second order elliptic partial differential equations in divergence form (resp. in non-divergence form).
For the Schrödinger equation, on a torus, an arbitrary non-empty open set provides control and observability of the solution: . We show that the same result remains true for where , and is a (rational or irrational) torus. That extends the results of [1], and [8] where the observability was proved for and conjectured for . The higher dimensional generalization remains open for .
Currently displaying 1 –
17 of
17