The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 181 – 200 of 1373

Showing per page

Asymptotics for the minimization of a Ginzburg-Landau energy in n dimensions

Paweł Strzelecki (1996)

Colloquium Mathematicae

We prove that minimizers u W 1 , n of the functional E ( u ) = 1 / n | u | n d x + 1 / ( 4 n ) ( 1 - | u | 2 ) 2 d x , ⊂ n , n ≥ 3, which satisfy the Dirichlet boundary condition u = g on for g: → S n - 1 with zero topological degree, converge in W 1 , n and C l o c α for any α<1 - upon passing to a subsequence k 0 - to some minimizing n-harmonic map. This is a generalization of an earlier result obtained for n=2 by Bethuel, Brezis, and Hélein. An example of nonunique asymptotic behaviour (which cannot occur in two dimensions if deg g = 0) is presented.

Aubry sets and the differentiability of the minimal average action in codimension one

Ugo Bessi (2009)

ESAIM: Control, Optimisation and Calculus of Variations

Let (x,u,∇u) be a Lagrangian periodic of period 1 in x1,...,xn,u. We shall study the non self intersecting functions u: Rn R minimizing ; non self intersecting means that, if u(x0 + k) + j = u(x0) for some x0∈Rn and (k , j) ∈Zn × Z, then u(x) = u(x + k) + j x. Moser has shown that each of these functions is at finite distance from a plane u = ρ · x and thus has an average slope ρ; moreover, Senn has proven that it is possible to define the average action of u, which is usually called β ( ρ ) since...

Bifurcations for a problem with jumping nonlinearities

Lucie Kárná, Milan Kučera (2002)

Mathematica Bohemica

A bifurcation problem for the equation Δ u + λ u - α u + + β u - + g ( λ , u ) = 0 in a bounded domain in N with mixed boundary conditions, given nonnegative functions α , β L and a small perturbation g is considered. The existence of a global bifurcation between two given simple eigenvalues λ ( 1 ) , λ ( 2 ) of the Laplacian is proved under some assumptions about the supports of the functions α , β . These assumptions are given by the character of the eigenfunctions of the Laplacian corresponding to λ ( 1 ) , λ ( 2 ) .

Currently displaying 181 – 200 of 1373