The search session has expired. Please query the service again.

Displaying 501 – 520 of 1373

Showing per page

Generating singularities of solutions of quasilinear elliptic equations using Wolff’s potential

Darko Žubrinić (2003)

Czechoslovak Mathematical Journal

We consider a quasilinear elliptic problem whose left-hand side is a Leray-Lions operator of p -Laplacian type. If p < γ < N and the right-hand side is a Radon measure with singularity of order γ at x 0 Ω , then any supersolution in W l o c 1 , p ( Ω ) has singularity of order at least ( γ - p ) ( p - 1 ) at x 0 . In the proof we exploit a pointwise estimate of 𝒜 -superharmonic solutions, due to Kilpeläinen and Malý, which involves Wolff’s potential of Radon’s measure.

Géométrie conforme en dimension 4 : ce que l’analyse nous apprend

Christophe Margerin (2004/2005)

Séminaire Bourbaki

Cet article présente les idées, les outils et les résultats qui ont permis à Chang S.-Y. A., M. Gursky et Yang P. de donner une caractérisation intégrale conforme de la sphère standard en dimension 4. Nous démarrons avec une généralisation à cette dimension de la formule de Polyakov pour les déterminants régularisés, que nous utilisons ensuite pour résoudre des problèmes du type “Yamabe” pour des polynômes quadratiques en la courbure de Ricci. Nous introduisons au passage le concept de paire conforme,...

Gradient estimates for a nonlinear equation Δ f u + c u - α = 0 on complete noncompact manifolds

Jing Zhang, Bingqing Ma (2011)

Communications in Mathematics

Let ( M , g ) be a complete noncompact Riemannian manifold. We consider gradient estimates on positive solutions to the following nonlinear equation Δ f u + c u - α = 0 in M , where α , c are two real constants and α > 0 , f is a smooth real valued function on M and Δ f = Δ - f . When N is finite and the N -Bakry-Emery Ricci tensor is bounded from below, we obtain a gradient estimate for positive solutions of the above equation. Moreover, under the assumption that -Bakry-Emery Ricci tensor is bounded from below and | f | is bounded from above,...

Gradient estimates for inverse curvature flows in hyperbolic space

Julian Scheuer (2015)

Geometric Flows

We prove gradient estimates for hypersurfaces in the hyperbolic space Hn+1, expanding by negative powers of a certain class of homogeneous curvature functions F. We obtain optimal gradient estimates for hypersurfaces evolving by certain powers p > 1 of F-1 and smooth convergence of the properly rescaled hypersurfaces. In particular, the full convergence result holds for the inverse Gauss curvature flow of surfaces without any further pinching condition besides convexity of the initial hypersurface....

Currently displaying 501 – 520 of 1373