The search session has expired. Please query the service again.

Displaying 521 – 540 of 1373

Showing per page

Gradient regularity for minimizers of functionals under p - q subquadratic growth

F. Leonetti, E. Mascolo, F. Siepe (2001)

Bollettino dell'Unione Matematica Italiana

Si prova la maggior sommabilità del gradiente dei minimi locali di funzionali integrali della forma Ω f D u d x , dove f soddisfa l'ipotesi di crescita ξ p - c 1 f ξ c 1 + ξ q , con 1 < p < q 2 . L'integrando f è C 2 e D D f ha crescita p - 2 dal basso e q - 2 dall'alto.

Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity

Antonio Ambrosetti, Veronica Felli, Andrea Malchiodi (2005)

Journal of the European Mathematical Society

We deal with a class on nonlinear Schrödinger equations (NLS) with potentials V ( x ) | x | α , 0 < α < 2 , and K ( x ) | x | β , β > 0 . Working in weighted Sobolev spaces, the existence of ground states v ε belonging to W 1 , 2 ( N ) is proved under the assumption that σ < p < ( N + 2 ) / ( N 2 ) for some σ = σ N , α , β . Furthermore, it is shown that v ε are spikes concentrating at a minimum point of 𝒜 = V θ K 2 / ( p 1 ) , where θ = ( p + 1 ) / ( p 1 ) 1 / 2 .

Hamilton-Jacobi flows and characterization of solutions of Aronsson equations

Petri Juutinen, Eero Saksman (2007)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

In this note, we verify the conjecture of Barron, Evans and Jensen [3] regarding the characterization of viscosity solutions of general Aronsson equations in terms of the properties of associated forward and backwards Hamilton-Jacobi flows. A special case of this result is analogous to the characterization of infinity harmonic functions in terms of convexity and concavity of the functions r max y B r ( x ) u ( y ) and r min y B r ( x ) u ( y ) , respectively.

Hardy-Poincaré type inequalities derived from p-harmonic problems

Iwona Skrzypczak (2014)

Banach Center Publications

We apply general Hardy type inequalities, recently obtained by the author. As a consequence we obtain a family of Hardy-Poincaré inequalities with certain constants, contributing to the question about precise constants in such inequalities posed in [3]. We confirm optimality of some constants obtained in [3] and [8]. Furthermore, we give constants for generalized inequalities with the proof of their optimality.

Currently displaying 521 – 540 of 1373