The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 161 –
180 of
851
The goal of the paper is the study of the contact problem of two elastic bodies which is applicable to the solution of displacements and stresses of the earth continuum and the tunnel wall. In this first part the variational formulation of the continuous and discrete model is stated. The second part covers the proof of convergence of finite element method to the solution of continuous problem while in the third part some practical applications are illustrated.
We study the semilinear problem with the boundary reaction
where , , is a smooth bounded domain, is a smooth, strictly positive, convex, increasing function which is superlinear at , and is a parameter. It is known that there exists an extremal parameter such that a classical minimal solution exists for , and there is no solution for . Moreover, there is a unique weak solution corresponding to the parameter . In this paper, we continue to study the spectral properties of and show...
In this paper, two algorithms are proposed to solve systems of algebraic equations generated by a discretization procedure of the weak formulation of boundary value problems for systems of nonlinear elliptic equations. The first algorithm, Newton-CG-MG, is suitable for systems with gradient mappings, while the second, Newton-CE-MG, can be applied to more general systems. Convergence theorems are proved and application to the semiconductor device modelling is described.
Si studiano soluzioni positive dellequazione in , dove , ed è un piccolo parametro positivo. Si impongono in genere condizioni al bordo di Neumann. Quando tende a zero, dimostriamo esistenza di soluzioni che si concentrano su curve o varietà.
The existence of decaying positive solutions in of the equations and displayed below is considered. From the existence of such solutions for the subhomogeneous cases (i.e. as ), a super-sub-solutions method (see § 2.2) enables us to obtain existence theorems for more general cases.
We present a revisited form of a result
proved in [Boccardo, Murat and Puel, Portugaliae Math.41 (1982) 507–534] and then
we adapt the new proof in order
to show the existence for solutions
of quasilinear elliptic problems also
if the lower order term has quadratic dependence on the gradient and singular dependence on the solution.
In this paper, by the Kirchhoff transformation, a Dirichlet-Neumann (D-N) alternating algorithm which is a non-overlapping domain decomposition method based on natural boundary reduction is discussed for solving exterior anisotropic quasilinear problems with circular artificial boundary. By the principle of the natural boundary reduction, we obtain natural integral equation for the anisotropic quasilinear problems on circular artificial boundaries and construct the algorithm and analyze its convergence....
Currently displaying 161 –
180 of
851