The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
For a class of degenerate pseudodifferential operators, local parametrices are constructed. This is done in the framework of a pseudodifferential calculus upon adding conditions of trace and potential type, respectively, along the boundary on which the operators degenerate.
We modify an example due to X.-J. Wang and obtain some counterexamples to the regularity of the degenerate complex Monge-Ampère equation on a ball in ℂⁿ and on the projective space ℙⁿ.
In this paper we study the Sobolev trace embedding W1,p(Ω) → LpV (∂Ω), where V is an indefinite weight. This embedding leads to a nonlinear eigenvalue problem where the eigenvalue appears at the (nonlinear) boundary condition. We prove that there exists a sequence of variational eigenvalues λk / +∞ and then show that the first eigenvalue is isolated, simple and monotone with respect to the weight. Then we prove a nonexistence result related to the first eigenvalue and we end this article with the...
The paper analyzes the influence on the meaning of natural growth in the gradient of a perturbation by a Hardy potential in some elliptic equations. Indeed, in the case of the Laplacian the natural problem becomes in , on , . This problem is a particular case of problem (2). Notice that is optimal as coefficient and exponent on the right hand side.
In this work we study non-negative singular infinity-harmonic functions in the half-space. We assume that solutions blow-up at the origin while vanishing at infinity and on a hyperplane. We show that blow-up rate is of the order |x|-1/3.
We prove the almost regularity of the degenerate complex Monge-Ampère equation in a special case.
In this article we produce a refined version of the classical Pohozaev identity in the radial setting. The refined identity is then compared to the original, and possible applications are discussed.
Currently displaying 1 –
20 of
49