The search session has expired. Please query the service again.
2000 Mathematics Subject Classification: 35J70, 35P15.The asymptotic of the first eigenvalue for linear second order
elliptic equations in divergence form with large drift is studied. A necessary
and a sufficient condition for the maximum possible rate of the first eigenvalue
is proved.
We consider non-linear elliptic equations having a measure in the right-hand side, of the type and prove differentiability and integrability results for solutions. New estimates in Marcinkiewicz spaces are also given, and the impact of the measure datum density properties on the regularity of solutions is analyzed in order to build a suitable Calderón-Zygmund theory for the problem. All the regularity results presented in this paper are provided together with explicit local a priori estimates.
Let Ω be a bounded convex domain in Rn with smooth, strictly convex boundary ∂Ω, i.e. the principal curvatures of ∂Ω are all positive. We study the problem of finding a convex function u in Ω such that:det (uij) = 0 in Ωu = φ given on ∂Ω.
We prove the existence of the least positive eigenvalue with a corresponding nonnegative eigenfunction of the quasilinear eigenvalue problem
where is a bounded domain, is a real number and , satisfy appropriate growth conditions. Moreover, the coefficient contains a degeneration or a singularity. We work in a suitable weighted Sobolev space and prove the boundedness of the eigenfunction in . The main tool is the investigation of the associated homogeneous eigenvalue problem and an application...
In the paper we study the equation , where is a degenerate elliptic operator, with Neumann boundary condition in a bounded open set . We prove existence and uniqueness of solutions in the space for the Neumann problem.
Let be a submanifold of a manifold . We address the question: When do viscosity subsolutions of a fully nonlinear PDE on , restrict to be viscosity subsolutions of the restricted subequation on ? This is not always true, and conditions are required. We first prove a basic result which, in theory, can be applied to any subequation. Then two definitive results are obtained. The first applies to any “geometrically defined” subequation, and the second to any subequation which can be transformed...
We consider degenerated elliptic equations of the formUnder suitable assumptions on , we obtain a characterization of Wiener type (involving weighted capacities) for the set of regular points for these operators. The set of regular points is shown to depend only on . The main tool we use is an estimate for the Green function in terms of .
Laplace interpolation is a popular approach in image inpainting using partial differential equations. The classic approach considers the Laplace equation with mixed boundary conditions. Recently a more general formulation has been proposed, where the differential operator consists of a point-wise convex combination of the Laplacian and the known image data. We provide the first detailed analysis on existence and uniqueness of solutions for the arising mixed boundary value problem. Our approach considers...
In this Note we prove a two-weight Sobolev-Poincaré inequality for the function spaces associated with a Grushin type operator. Conditions on the weights are formulated in terms of a strong weight with respect to the metric associated with the operator. Roughly speaking, the strong condition provides relationships between line and solid integrals of the weight. Then, this result is applied in order to prove Harnack's inequality for positive weak solutions of some degenerate elliptic equations....
Currently displaying 1 –
20 of
20