The search session has expired. Please query the service again.
               
            
            
                      
                           
                     
          
            
              
                The search session has expired. Please query the service again.
               
            
            
                      
                           
                     
          
            
              
                The search session has expired. Please query the service again.
               
            
            
                      
                           
        
      
        
	
	
        
    
		
			
			
                                             
                
                    
                    
                
                
    			
    				
    					
                                        Displaying 21 – 
                                        40 of 
                                        200
                        
      
    				
                    
    	            
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
We apply Robin penalization to Dirichlet optimal control problems
governed by semilinear elliptic equations. Error estimates in terms of the penalization parameter are stated. The results are compared with some previous ones in the literature and are checked by a numerical experiment. A detailed study of the regularity of the solutions of the PDEs is carried out.
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
A second order elliptic problem with axisymmetric data is solved in a finite element space, constructed on a triangulation with curved triangles, in such a way, that the (nonhomogeneous) boundary condition is fulfilled in the sense of a penalty. On the basis of two approximate solutions, extrapolates for both the solution and the boundary flux are defined. Some a priori error estimates are derived, provided the exact solution is regular enough. The paper extends some of the results of J.T. King...
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
Let Ω ⊂ RN be a smooth bounded domain. We give sufficient conditions (which are also necessary in many cases) on two nonnegative functions a, b that are possibly discontinuous and unbounded for the existence of nonnegative solutions for semilinear Dirichlet periodic parabolic problems of the form Lu = λa (x, t) up - b (x, t) uq in Ω × R, where 0 < p, q < 1 and λ > 0. In some cases we also show the existence of solutions uλ in the interior of the positive cone and that uλ can...
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
We study the existence of spatial periodic solutions for nonlinear elliptic equations  where  is a continuous function, nondecreasing w.r.t. . We give necessary and sufficient conditions for the existence of periodic solutions. Some cases with nonincreasing functions  are investigated as well. As an application we analyze the mathematical model of electron beam focusing system and we prove the existence of positive periodic solutions for the envelope equation. We present also numerical simulations....
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
We study the existence of spatial periodic solutions for nonlinear
elliptic equations  
where g is a continuous function, nondecreasing w.r.t. u. We
give   necessary and sufficient conditions for the existence of
periodic solutions. Some cases with nonincreasing functions g
are investigated as well. As an application we analyze the
mathematical model of electron beam focusing system and we prove
the existence of positive periodic solutions for the envelope
equation. We present also numerical simulations.
...
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
We study a periodic reaction-diffusion system of a competitive model with Dirichlet boundary conditions. By the method of upper and lower solutions and an argument similar to that of Ahmad and Lazer, we establish the existence of periodic solutions and also investigate the stability and global attractivity of positive periodic solutions under certain conditions.
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
In this paper we study the periodic-Neumann boundary value problem for a class of nonlinear parabolic equations. We prove a new uniqueness result and study the structure of the set of solutions when there exist more than one solution. The ideas are applied to a Neumann problem for an elliptic equation.
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
We prove that Perron's method and the method of half-relaxed limits of Barles-Perthame works for the so called B-continuous viscosity solutions of a large class of fully nonlinear unbounded partial differential equations in Hilbert spaces. Perron's method extends the existence of B-continuous viscosity solutions to many new equations that are not of Bellman type. The method of half-relaxed limits allows limiting operations with viscosity solutions without any a priori estimates. Possible applications...
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
We consider the problemwhere  and  are smooth bounded domains in , ,  and  We prove that if the size of the hole  goes to zero and if, simultaneously, the parameter  goes to zero at the appropriate rate, then the problem has a solution which blows up at the origin.
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    			
    			 
 
    			
    				Currently displaying 21 – 
                                        40 of 
                                        200