The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We consider the Navier-Stokes equations in unbounded domains of uniform -type. We construct mild solutions for initial values in certain extrapolation spaces associated to the Stokes operator on these domains. Here we rely on recent results due to Farwig, Kozono and Sohr, the fact that the Stokes operator has a bounded -calculus on such domains, and use a general form of Kato’s method. We also obtain information on the corresponding pressure term.
We consider nondiagonal elliptic and parabolic systems of equations with quadratic nonlinearities in the gradient. We discuss a new description of regular points of solutions of such systems. For a class of strongly nonlinear parabolic systems, we estimate locally the Hölder norm of a solution. Instead of smallness of the oscillation, we assume local smallness of the Campanato seminorm of the solution under consideration. Theorems about quasireverse Hölder inequalities proved by the author are essentially...
We consider the Burgers equation and prove a property which seems to have been unobserved until now: there is no limitation on the growth of the nonnegative initial datum u0(x) at infinity when the problem is formulated on unbounded intervals, as, e.g. (0 +∞), and the solution is unique without prescribing its behaviour at infinity. We also consider the associate stationary problem. Finally, some applications to the linear heat equation with boundary conditions of Robin type are also given.
It is proved that the solution to the initial value problem , u(0,x) = 1/(1+x²), does not belong to the Gevrey class in time for 0 ≤ s < 1. The proof is based on an estimation of a double sum of products of binomial coefficients.
2000 Mathematics Subject Classification: 26A33, 33C60, 44A15, 35K55Denoting by Dα0|t the time-fractional derivative of order α (α ∈ (0, 1)) in the sense of Caputo, and by ∆H the Laplacian operator on the (2N + 1) - dimensional Heisenberg group H^N, we prove some nonexistence results for solutions to problems of the type
Dα0|tu − ∆H(au) >= |u|^p,
Dα0|tu − ∆H(au) >= |v|^p,
Dδ0|tv − ∆H(bv) >= |u|^q,
in H^N × R+ , with a, b ∈ L ∞ (H^N × R+).
For α = 1 (and δ = 1 in the case of two inequalities),...
We study existence and approximation of non-negative solutions of partial differential equations of the typewhere is a symmetric matrix-valued function of the spatial variable satisfying a uniform ellipticity condition, is a suitable non decreasing function, is a convex function. Introducing the energy functional , where is a convex function linked to by , we show that is the “gradient flow” of with respect to the 2-Wasserstein distance between probability measures on the space...
We study existence and approximation of non-negative solutions of partial differential equations of the type
where A is a symmetric matrix-valued function of the spatial variable satisfying a uniform ellipticity condition,
is a suitable non decreasing function, is a convex function.
Introducing the energy functional ,
where F is a convex function linked to f by ,
we show that u is the “gradient flow” of ϕ with respect to the
2-Wasserstein distance between probability measures on
the space...
We prove an existence result for a class of parabolic problems whose principal part is the -Laplace operator or a more general Leray-Lions type operator, and featuring an additional first order term which grows like . Here the spatial domain can have infinite measure, and the data may be not regular enough to ensure the boundedness of solutions. As a consequence, solutions are obtained in a class of functions with exponential integrability. An existence result of bounded solutions is also given...
Currently displaying 1 –
20 of
50