The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The continuity and boundedness of the stress to the solution of the thermoelastic system is studied first for the linear case on a strip and then for the twodimensional model involving nonlinearities, noncontinuous heating regimes and isolated boundary nonsmoothnesses of the heated body.
We present the solution of some inverse problems for one-dimensional free boundary problems of oxygen consumption type, with a semilinear convection-diffusion-reaction parabolic equation. Using a fixed domain transformation (Landau’s transformation) the direct problem is reduced to a system of ODEs. To minimize the objective functionals in the inverse problems, we approximate the data by a finite number of parameters with respect to which automatic differentiation is applied.
The paper deals with the question of global solution to boundary value problem for the system of semilinear heat equation for and complementary nonlinear differential equation for (“thermal memory”). Uniqueness of the solution is shown and the method of successive approximations is used for the proof of existence of a global solution provided the condition holds. The condition is verified for some particular cases (e. g.: bounded nonlinearity, homogeneous Neumann problem (even for unbounded...
Stability and asymptotic stability of the solutions of impulsive
nonlinear pa ra bo lic equations
are studied via the method of differential inequalities.
The linear heat equation predicts that the variations of temperature along a cold ice sheet {i.e. at a temperature less than is freezing point) due to a sudden increase in air temperature, are very very slow. Based on this we represent the nonlinear evolution of an ice sheet as a sequence of steady states. As a first fundamental indication that this model is correct well posedness with respect to the variations of initial and boundary data is proved. Further an estimate of the error made in evaluating...
We consider the viscous Allen-Cahn and Cahn-Hilliard models with an additional term called the nonlinear Willmore regularization. First, we are interested in the well-posedness of these two models. Furthermore, we prove that both models possess a global attractor. In addition, as far as the viscous Allen-Cahn equation is concerned, we construct a robust family of exponential attractors, i.e. attractors which are continuous with respect to the perturbation parameter. Finally, we give some numerical...
We consider optimal distributed and boundary control problems
for semilinear parabolic equations, where pointwise constraints on
the control and pointwise mixed control-state constraints of bottleneck
type are given. Our main result states the existence of regular
Lagrange multipliers for the state-constraints. Under natural
assumptions, we are able to show the existence of bounded and measurable
Lagrange multipliers. The method is based on results from the theory
of continuous linear programming...
Slightly below the transition temperatures, the behavior of superconducting materials is governed by the Ginzburg-Landau (GL) equation which characterizes the dynamical interaction of the density of superconducting electron pairs and the exited electromagnetic potential. In this paper, an optimal control problem of the strength of external magnetic field for one-dimensional thin film superconductors with respect to a convex criterion functional is considered. It is formulated as a nonlinear coefficient...
Currently displaying 61 –
79 of
79