Displaying 221 – 240 of 415

Showing per page

Mathematical study of a petroleum-engineering scheme

Robert Eymard, Raphaèle Herbin, Anthony Michel (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Models of two phase flows in porous media, used in petroleum engineering, lead to a system of two coupled equations with elliptic and parabolic degenerate terms, and two unknowns, the saturation and the pressure. For the purpose of their approximation, a coupled scheme, consisting in a finite volume method together with a phase-by-phase upstream weighting scheme, is used in the industrial setting. This paper presents a mathematical analysis of this coupled scheme, first showing that it satisfies...

Modelling and Mathematical Analysis of the Glass Eel Migration in the Adour River Estuary

M. Odunlami, G. Vallet (2012)

Mathematical Modelling of Natural Phenomena

In this paper we are interested in a mathematical model of migration of grass eels in an estuary. We first revisit a previous model proposed by O. Arino and based on a degenerate convection-diffusion equation of parabolic-hyperbolic type with time-varying subdomains. Then, we propose an adapted mathematical framework for this model, we prove a result of existence of a weak solution and we propose some numerical simulations.

Multicomponent flow in a porous medium. Adsorption and Soret effect phenomena : local study and upscaling process

Serge Blancher, René Creff, Gérard Gagneux, Bruno Lacabanne, François Montel, David Trujillo (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Our aim here is to study the thermal diffusion phenomenon in a forced convective flow. A system of nonlinear parabolic equations governs the evolution of the mass fractions in multicomponent mixtures. Some existence and uniqueness results are given under suitable conditions on state functions. Then, we present a numerical scheme based on a “mixed finite element” method adapted to a finite volume scheme, of which we give numerical analysis. In a last part, we apply an homogenization technique to...

Multicomponent flow in a porous medium. Adsorption and Soret effect phenomena: local study and upscaling process

Serge Blancher, René Creff, Gérard Gagneux, Bruno Lacabanne, François Montel, David Trujillo (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Our aim here is to study the thermal diffusion phenomenon in a forced convective flow. A system of nonlinear parabolic equations governs the evolution of the mass fractions in multicomponent mixtures. Some existence and uniqueness results are given under suitable conditions on state functions. Then, we present a numerical scheme based on a "mixed finite element"method adapted to a finite volume scheme, of which we give numerical analysis. In a last part, we apply an homogenization technique to...

New unilateral problems in stratigraphy

Stanislav N. Antontsev, Gérard Gagneux, Robert Luce, Guy Vallet (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

This work deals with the study of some stratigraphic models for the formation of geological basins under a maximal erosion rate constrain. It leads to introduce differential inclusions of degenerated hyperbolic-parabolic type 0 t u - d i v { H ( t u + E ) u } , where H is the maximal monotonous graph of the Heaviside function and E is a given non-negative function. Firstly, we present the new and realistic models and an original mathematical formulation, taking into account the weather-limited rate constraint in the conservation...

Note on blow-up of solutions for a porous medium equation with convection and boundary flux

Zhiyong Wang, Jingxue Yin (2012)

Colloquium Mathematicae

De Pablo et al. [Proc. Roy. Soc. Edinburgh Sect. A 138 (2008), 513-530] considered a nonlinear boundary value problem for a porous medium equation with a convection term, and they classified exponents of nonlinearities which lead either to the global-in-time existence of solutions or to a blow-up of solutions. In their analysis they left open the case of a certain critical range of exponents. The purpose of this note is to fill this gap.

Null controllability of degenerate parabolic equations of Grushin and Kolmogorov type

Karine Beauchard (2011/2012)

Séminaire Laurent Schwartz — EDP et applications

The goal of this note is to present the results of the references [5] and [4]. We study the null controllability of the parabolic equations associated with the Grushin-type operator x 2 + | x | 2 γ y 2 ( γ > 0 ) in the rectangle ( x , y ) ( - 1 , 1 ) × ( 0 , 1 ) or with the Kolmogorov-type operator v γ x f + v 2 f ( γ { 1 , 2 } ) in the rectangle ( x , v ) 𝕋 × ( - 1 , 1 ) , under an additive control supported in an open subset ω of the space domain.We prove that the Grushin-type equation is null controllable in any positive time for γ < 1 and that there is no time for which it is null controllable for γ > 1 ....

Null controllability of Grushin-type operators in dimension two

Karine Beauchard, Piermarco Cannarsa, Roberto Guglielmi (2014)

Journal of the European Mathematical Society

We study the null controllability of the parabolic equation associated with the Grushin-type operator A = x 2 + x 2 γ γ 2 , ( γ > 0 ) , in the rectangle Ω = ( - 1 , 1 ) × ( 0 , 1 ) , under an additive control supported in an open subset ω of Ω . We prove that the equation is null controllable in any positive time for γ < 1 and that there is no time for which it is null controllable for γ > 1 . In the transition regime γ = 1 and when ω is a strip ω = ( a , b ) × ( 0 , 1 ) ( 0 < a , b 1 ) ), a positive minimal time is required for null controllability. Our approach is based on the fact that, thanks to the particular...

Numerical analysis of nonlinear elliptic-parabolic equations

Emmanuel Maitre (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper deals with the numerical approximation of mild solutions of elliptic-parabolic equations, relying on the existence results of Bénilan and Wittbold (1996). We introduce a new and simple algorithm based on Halpern’s iteration for nonexpansive operators (Bauschke, 1996; Halpern, 1967; Lions, 1977), which is shown to be convergent in the degenerate case, and compare it with existing schemes (Jäger and Kačur, 1995; Kačur, 1999).

Numerical analysis of nonlinear elliptic-parabolic equations

Emmanuel Maitre (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper deals with the numerical approximation of mild solutions of elliptic-parabolic equations, relying on the existence results of Bénilan and Wittbold (1996). We introduce a new and simple algorithm based on Halpern's iteration for nonexpansive operators (Bauschke, 1996; Halpern, 1967; Lions, 1977), which is shown to be convergent in the degenerate case, and compare it with existing schemes (Jäger and Kačur, 1995; Kačur, 1999).

Numerical methods for fourth order nonlinear degenerate diffusion problems

Jürgen Becker, Günther Grün, Martin Lenz, Martin Rumpf (2002)

Applications of Mathematics

Numerical schemes are presented for a class of fourth order diffusion problems. These problems arise in lubrication theory for thin films of viscous fluids on surfaces. The equations being in general fourth order degenerate parabolic, additional singular terms of second order may occur to model effects of gravity, molecular interactions or thermocapillarity. Furthermore, we incorporate nonlinear surface tension terms. Finally, in the case of a thin film flow driven by a surface active agent (surfactant),...

Currently displaying 221 – 240 of 415