The search session has expired. Please query the service again.
Displaying 101 –
120 of
402
A model representing the vibrations of a fluid-solid coupled structure is considered. Following Hilbert Uniqueness Method (HUM) introduced by Lions, we establish exact controllability results for this model with an internal control in the fluid part and there is no control in the solid part. Novel features which arise because of the coupling are pointed out. It is a source of difficulty in the proof of observability inequalities, definition of weak solutions and the proof of controllability results....
We consider the linear wave equation with Dirichlet boundary conditions in a bounded interval, and with a control acting on a moving point. We give sufficient conditions on the trajectory of the control in order to have the exact controllability property.
The exact internal controllability of the radial solutions of a semilinear heat equation in R3 is proved. The result applies for nonlinearities that are of an order smaller than |s| logp |s| at infinity for 1 ≤ p < 2. The method of the proof combines HUM and a fixed point technique.
We consider the initial-boundary value problem for a nonlinear higher-order nonlinear hyperbolic equation in a bounded domain. The existence of global weak solutions for this problem is established by using the potential well theory combined with Faedo-Galarkin method. We also established the asymptotic behavior of global solutions as by applying the Lyapunov method.
We establish the existence of mild, strong, classical solutions for a class of second order abstract functional differential equations with nonlocal conditions.
Currently displaying 101 –
120 of
402