The search session has expired. Please query the service again.
Displaying 501 –
520 of
819
We consider the non-stationary Navier-Stokes equations completed by the equation of conservation of internal energy. The viscosity of the fluid is assumed to depend on the temperature, and the dissipation term is the only heat source in the conservation of internal energy. For the system of PDE's under consideration, we prove the existence of a weak solution such that: 1) the weak form of the conservation of internal energy involves a defect measure, and 2) the equality for the total energy is satisfied....
We present a numerical simulation of two coupled Navier-Stokes flows, using ope-rator-split-ting and optimization-based non-overlapping domain decomposition methods. The model problem consists of two Navier-Stokes fluids coupled, through a common interface, by a nonlinear transmission condition. Numerical experiments are carried out with two coupled fluids; one with an initial linear profile and the other in rest. As expected, the transmission condition generates a recirculation within the fluid...
We study an optimal boundary control problem for the two dimensional unsteady linearized compressible Navier–Stokes equations in a rectangle. The control acts through the Dirichlet boundary condition. We first establish the existence and uniqueness of the solution for the two-dimensional unsteady linearized compressible Navier–Stokes equations in a rectangle with inhomogeneous Dirichlet boundary data, not necessarily smooth. Then, we prove the existence and uniqueness of the optimal solution over...
This paper deals with a strongly elliptic perturbation for the Stokes equation in exterior three-dimensional domains Ω with smooth boundary. The continuity equation is substituted by the equation -ε²Δp + div u = 0, and a Neumann boundary condition for the pressure is added. Using parameter dependent Sobolev norms, for bounded domains and for sufficiently smooth data we prove convergence for the velocity part and convergence for the pressure to the solution of the Stokes problem, with δ arbitrarily...
We consider a finite element discretization by
the Taylor–Hood element for the stationary
Stokes and Navier–Stokes
equations with slip boundary condition. The slip boundary condition
is enforced pointwise for nodal values of the velocity in
boundary nodes. We prove optimal error estimates in the
H1 and L2 norms for the velocity and pressure respectively.
In the presented work, we study the regularity of solutions to the generalized Navier-Stokes problem up to a C 2 boundary in dimensions two and three. The point of our generalization is an assumption that a deviatoric part of a stress tensor depends on a shear rate and on a pressure. We focus on estimates of the Hausdorff measure of a singular set which is defined as a complement of a set where a solution is Hölder continuous. We use so-called indirect approach to show partial regularity, for dimension...
We study the flow of an incompressible homogeneous fluid whose material coefficients depend on the temperature and the shear-rate. For large class of models we establish the existence of a suitable weak solution for two-dimensional flows of fluid in a bounded domain. The proof relies on the reconstruction of the globally integrable pressure, available due to considered Navier’s slip boundary conditions, and on the so-called -truncation method, used to obtain the strong convergence of the velocity...
Nous considérons l'équation d'Euler pour un fluide incompressible dans un domaine borné régulier du plan. Pour une donnée initiale avec un tourbillon de type poche, i.e valant 1 sur un ouvert lisse à bord höldérien et 0 en dehors, nous prouvons l'existence d'une solution de même type, pour tout temps si la poche initiale est décollée du bord du domaine et seulement localement en temps si la poche initiale est tangente au bord. Nous contrôlons l'influence du bord grâce à la théorie des problèmes...
In this paper, we study the singular vortex patches in the two-dimensional incompressible Navier-Stokes equations. We show, in particular, that if the initial vortex patch is C1+s outside a singular set Σ, so the velocity is, for all time, lipschitzian outside the image of Σ through the viscous flow. In addition, the correponding lipschitzian norm is independent of the viscosity. This allows us to prove some results related to the inviscid limit for the geometric structures of the vortex patch.
We study a multilinear fixed-point equation in a closed ball of a Banach space where the application is 1-Lipschitzian: existence, uniqueness, approximations, regularity.
The initial-boundary value problem of two-dimensional
incompressible fluid flow in stream function form is considered.
A prediction-correction Legendre spectral scheme is proposed, which is
easy to be performed.
The numerical solution possesses the accuracy
of second-order in time and higher order in space. The
numerical experiments show the high accuracy of this approach.
Currently displaying 501 –
520 of
819