The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 101 – 120 of 318

Showing per page

Flensted-Jensen's functions attached to the Landau problem on the hyperbolic disc

Zouhaïr Mouayn (2007)

Applications of Mathematics

We give an explicit expression of a two-parameter family of Flensted-Jensen’s functions Ψ μ , α on a concrete realization of the universal covering group of U ( 1 , 1 ) . We prove that these functions are, up to a phase factor, radial eigenfunctions of the Landau Hamiltonian on the hyperbolic disc with a magnetic field strength proportional to μ , and corresponding to the eigenvalue 4 α ( α - 1 ) .

Global well-posedness for the Klein-Gordon-Schrödinger system with higher order coupling

Agus Leonardi Soenjaya (2022)

Mathematica Bohemica

Global well-posedness for the Klein-Gordon-Schrödinger system with generalized higher order coupling, which is a system of PDEs in two variables arising from quantum physics, is proven. It is shown that the system is globally well-posed in ( u , n ) L 2 × L 2 under some conditions on the nonlinearity (the coupling term), by using the L 2 conservation law for u and controlling the growth of n via the estimates in the local theory. In particular, this extends the well-posedness results for such a system in Miao, Xu (2007)...

Growth and accretion of mass in an astrophysical model

Piotr Biler (1995)

Applicationes Mathematicae

We study asymptotic behavior of radial solutions of a nonlocal Fokker-Planck equation describing the evolution of self-attracting particles. In particular, we consider stationary solutions in balls and in the whole space, self-similar solutions defined globally in time, blowing up self-similar solutions, and singularities of solutions that blow up in a finite time.

Half-delocalization of eigenfunctions for the Laplacian on an Anosov manifold

Nalini Anantharaman, Stéphane Nonnenmacher (2007)

Annales de l’institut Fourier

We study the high-energy eigenfunctions of the Laplacian on a compact Riemannian manifold with Anosov geodesic flow. The localization of a semiclassical measure associated with a sequence of eigenfunctions is characterized by the Kolmogorov-Sinai entropy of this measure. We show that this entropy is necessarily bounded from below by a constant which, in the case of constant negative curvature, equals half the maximal entropy. In this sense, high-energy eigenfunctions are at least half-delocalized....

Currently displaying 101 – 120 of 318