The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 201 –
220 of
364
We provide a detailed analysis of the minimizers of the functional , , subject to the constraint . This problem, e.g., describes the long-time behavior of the parabolic Anderson in probability theory or ground state solutions of a nonlinear Schrödinger equation. While existence can be proved with standard methods, we show that the usual uniqueness results obtained with PDE-methods can be considerably simplified by additional variational arguments. In addition, we investigate qualitative properties...
We consider a random, uniformly elliptic coefficient field on the lattice . The distribution of the coefficient field is assumed to be stationary. Delmotte and Deuschel showed that the gradient and second mixed derivative of the parabolic Green’s function satisfy optimal annealed estimates which are and , respectively, in probability, i.e., they obtained bounds on and . In particular, the elliptic Green’s function satisfies optimal annealed bounds. In their recent work, the authors...
We prove an estimate for the difference of two solutions of the Schrödinger map equation for maps from to This estimate yields some continuity properties of the flow map for the topology of , provided one takes its quotient by the continuous group action of given by translations. We also prove that without taking this quotient, for any the flow map at time is discontinuous as a map from , equipped with the weak topology of to the space of distributions The argument relies in an essential...
Currently displaying 201 –
220 of
364