The search session has expired. Please query the service again.
A viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping is considered. Using integral inequalities and multiplier techniques we establish polynomial decay estimates for the energy of the problem. The results obtained in this paper extend previous results by Tatar and Zaraï [25].
We show global existence for a class of models of fluids that change their properties depending on the concentration of a chemical. We allow that the stress tensor in (t, x) depends on the velocity and concentration at other points and times. The example we have in mind foremost are materials with memory.
In this paper, we study the global existence of solutions for first and second order initial value problems for functional semilinear integrodifferential equations in Banach space, by using the Leray-Schauder Alternative or the Nonlinear Alternative for contractive maps.
In this paper we give a proof of the existence and uniqueness of smooth solutions for the nonlinear semiconductor Boltzmann equation. The method used allows to obtain global existence in time and uniqueness for dimensions 1 and 2. For dimension 3 we can only assure local existence in time and uniqueness. First, we define a sequence of solutions for a linearized equation and then, we prove the strong convergence of the sequence in a suitable space. The metod relies on the use of interpolation estimates...
The existence of small global (in time) solutions to an abstract evolution equation containing a damping term is proved. The result is then applied to fully nonlinear telegraph equations and to nonlinear equations involving operators with time delay.
We consider a simple model for the immune system in which virus are able to undergo mutations and are in competition with leukocytes. These mutations are related to several other concepts which have been proposed in the literature like those of shape or of virulence – a continuous notion. For a given species, the system admits a globally attractive critical point. We prove that mutations do not affect this picture for small perturbations and under strong structural assumptions. Based on numerical...
We consider a simple model for the immune system
in which virus are able to undergo mutations and are in competition
with leukocytes. These mutations are related to several other concepts which have
been proposed in the literature like those of shape or of
virulence – a continuous notion. For a given species, the system admits a
globally attractive critical point. We prove that mutations do not affect this
picture for small perturbations and under strong structural assumptions.
Based on numerical...
We introduce a new transport distance between probability measures on that is built from a Lévy jump kernel. It is defined via a non-local variant of the Benamou–Brenier formula. We study geometric and topological properties of this distance, in particular we prove existence of geodesics. For translation invariant jump kernels we identify the semigroup generated by the associated non-local operator as the gradient flow of the relative entropy w.r.t. the new distance and show that the entropy is...
Currently displaying 21 –
37 of
37