Displaying 281 – 300 of 362

Showing per page

Monte Carlo Random Walk Simulations Based on Distributed Order Differential Equations with Applications to Cell Biology

Andries, Erik, Umarov, Sabir, Steinberg, Stanly (2006)

Fractional Calculus and Applied Analysis

Mathematics Subject Classification: 65C05, 60G50, 39A10, 92C37In this paper the multi-dimensional Monte-Carlo random walk simulation models governed by distributed fractional order differential equations (DODEs) and multi-term fractional order differential equations are constructed. The construction is based on the discretization leading to a generalized difference scheme (containing a finite number of terms in the time step and infinite number of terms in the space step) of the Cauchy problem for...

More pressure in the finite element discretization of the Stokes problem

Christine Bernardi, Frédéric Hecht (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

For the Stokes problem in a two- or three-dimensional bounded domain, we propose a new mixed finite element discretization which relies on a nonconforming approximation of the velocity and a more accurate approximation of the pressure. We prove that the velocity and pressure discrete spaces are compatible, in the sense that they satisfy an inf-sup condition of Babuška and Brezzi type, and we derive some error estimates.

Mortar finite element discretization of a model coupling Darcy and Stokes equations

Christine Bernardi, Tomás Chacón Rebollo, Frédéric Hecht, Zoubida Mghazli (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

As a first draft of a model for a river flowing on a homogeneous porous ground, we consider a system where the Darcy and Stokes equations are coupled via appropriate matching conditions on the interface. We propose a discretization of this problem which combines the mortar method with standard finite elements, in order to handle separately the flow inside and outside the porous medium. We prove a priori and a posteriori error estimates for the resulting discrete problem. Some numerical experiments...

Mortar spectral element discretization of the Laplace and Darcy equations with discontinuous coefficients

Zakaria Belhachmi, Christine Bernardi, Andreas Karageorghis (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper deals with the mortar spectral element discretization of two equivalent problems, the Laplace equation and the Darcy system, in a domain which corresponds to a nonhomogeneous anisotropic medium. The numerical analysis of the discretization leads to optimal error estimates and the numerical experiments that we present enable us to verify its efficiency.

Mortar spectral method in axisymmetric domains

Saloua Mani Aouadi, Jamil Satouri (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider the Laplace equation posed in a three-dimensional axisymmetric domain. We reduce the original problem by a Fourier expansion in the angular variable to a countable family of two-dimensional problems. We decompose the meridian domain, assumed polygonal, in a finite number of rectangles and we discretize by a spectral method. Then we describe the main features of the mortar method and use the algorithm Strang Fix to improve the accuracy of our discretization.

Mortar spectral method in axisymmetric domains

Saloua Mani Aouadi, Jamil Satouri (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider the Laplace equation posed in a three-dimensional axisymmetric domain. We reduce the original problem by a Fourier expansion in the angular variable to a countable family of two-dimensional problems. We decompose the meridian domain, assumed polygonal, in a finite number of rectangles and we discretize by a spectral method. Then we describe the main features of the mortar method and use the algorithm Strang Fix to improve the accuracy...

Moving Dirichlet boundary conditions

Robert Altmann (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper develops a framework to include Dirichlet boundary conditions on a subset of the boundary which depends on time. In this model, the boundary conditions are weakly enforced with the help of a Lagrange multiplier method. In order to avoid that the ansatz space of the Lagrange multiplier depends on time, a bi-Lipschitz transformation, which maps a fixed interval onto the Dirichlet boundary, is introduced. An inf-sup condition as well as existence results are presented for a class of second...

Moving mesh for the axisymmetric harmonic map flow

Benoit Merlet, Morgan Pierre (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We build corotational symmetric solutions to the harmonic map flow from the unit disc into the unit sphere which have constant degree. First, we prove the existence of such solutions, using a time semi-discrete scheme based on the idea that the harmonic map flow is the L 2 -gradient of the relaxed Dirichlet energy. We prove a partial uniqueness result concerning these solutions. Then, we compute numerically these solutions by a moving-mesh method which allows us to deal with the singularity at the...

Moving mesh for the axisymmetric harmonic map flow

Benoit Merlet, Morgan Pierre (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We build corotational symmetric solutions to the harmonic map flow from the unit disc into the unit sphere which have constant degree. First, we prove the existence of such solutions, using a time semi-discrete scheme based on the idea that the harmonic map flow is the L2-gradient of the relaxed Dirichlet energy. We prove a partial uniqueness result concerning these solutions. Then, we compute numerically these solutions by a moving-mesh method which allows us to deal with the singularity at the...

Currently displaying 281 – 300 of 362