The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
One parabolic integrodifferential problem in the abstract real Hilbert spaces is studied in this paper. The semidiscrete and full discrete approximate solution is defined and the error estimate of Rothe's function in some function spaces is established.
We present a heterogeneous finite element method for the solution of a high-dimensional population balance equation, which depends both the physical and the internal property coordinates. The proposed scheme tackles the two main difficulties in the finite element solution of population balance equation: (i) spatial discretization with the standard finite elements, when the dimension of the equation is more than three, (ii) spurious oscillations in the solution induced by standard Galerkin approximation...
We present a heterogeneous finite element method for the solution of a high-dimensional
population balance equation, which depends both the physical and the internal property
coordinates. The proposed scheme tackles the two main difficulties in the finite element
solution of population balance equation: (i) spatial discretization with the standard
finite elements, when the dimension of the equation is more than three, (ii) spurious
oscillations in...
Using the approach in [5] for analysing
time discretization error and assuming
more regularity on the initial data, we improve on
the error bound derived in [2]
for a fully practical piecewise linear
finite element approximation with a backward Euler time
discretization
of a model for phase separation of a multi-component alloy with
non-smooth free energy.
A coupled finite/boundary element method to approximate the free vibration modes of an elastic structure containing an incompressible fluid is analyzed in this paper. The effect of the fluid is taken into account by means of one of the most usual procedures in engineering practice: an added mass formulation, which is posed in terms of boundary integral equations. Piecewise linear continuous elements are used to discretize the solid displacements and the fluid-solid interface variables. Spectral...
A coupled finite/boundary element method to approximate the free
vibration modes of an elastic structure containing an incompressible
fluid is analyzed in this paper. The effect of the fluid is taken into
account by means of one of the most usual procedures in engineering
practice: an added mass formulation, which is posed in terms of
boundary integral equations. Piecewise linear continuous elements are
used to discretize the solid displacements and the fluid-solid
interface variables....
We consider the spherically symmetric Vlasov-Einstein system in the case of asymptotically flat spacetimes.
From the physical point of view this system of equations can model the formation of a spherical black hole by
gravitational collapse or describe the evolution of galaxies and globular clusters. We present high-order numerical schemes based on
semi-Lagrangian
techniques. The convergence of the solution of the discretized problem to
the exact solution is proven and high-order error estimates...
In this paper we propose a time discretization of a system of two parabolic equations describing diffusion-driven atom rearrangement in crystalline matter. The equations express the balances of microforces and microenergy; the two phase fields are the order parameter and the chemical potential. The initial and boundary-value problem for the evolutionary system is known to be well posed. Convergence of the discrete scheme to the solution of the continuous problem is proved by a careful development...
This paper studies the gradient flow of a regularized Mumford-Shah functional proposed by Ambrosio and Tortorelli (1990, 1992) for image segmentation, and adopted by Esedoglu and Shen (2002) for image inpainting. It is shown that the gradient flow with initial data possesses a global weak solution, and it has a unique global in time strong solution, which has at most finite number of point singularities in the space-time, when the initial data are in . A family of fully discrete approximation...
This paper studies the gradient flow of a regularized Mumford-Shah functional
proposed by Ambrosio and Tortorelli (1990, 1992) for image
segmentation, and adopted by Esedoglu and Shen (2002) for image inpainting.
It is shown that the gradient flow with L2 x L∞ initial data
possesses a global weak solution, and it has a unique global in time
strong solution, which has at most finite number of point singularities
in the space-time, when the initial data are in H1 x H1 ∩ L∞.
A family of fully...
We propose and analyze numerical schemes for viscosity solutions of time-dependent Hamilton-Jacobi equations on the Heisenberg group.
The main idea is to construct a grid compatible with the noncommutative group geometry. Under suitable assumptions on the data, the Hamiltonian and the parameters for the discrete first order scheme,
we prove that the error between the viscosity solution computed at the grid nodes and the solution of the discrete problem behaves like where h is the mesh step. Such...
We establish some error estimates for the approximation of an optimal stopping problem along the paths of the Black–Scholes model. This approximation is based on a tree method. Moreover, we give a global approximation result for the related obstacle problem.
We establish some error estimates for the approximation of an
optimal stopping problem along the paths of the Black–Scholes
model. This approximation is based on a tree method. Moreover, we
give a global approximation result for the related obstacle
problem.
Currently displaying 61 –
80 of
80