The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We present the notion of scattering monodromy for a two degree of freedom hyperbolic oscillator and apply this idea to determine the Picard-Lefschetz monodromy of the isolated singular point of a quadratic function of two complex variables.
The aim of this article is to present algorithms to compute the first
conjugate time along a smooth extremal curve, where the trajectory
ceases to be optimal. It is based on recent theoretical developments
of geometric optimal control, and the article contains a review
of second order optimality conditions.
The computations are related to a test
of positivity of the intrinsic second order derivative or a test of
singularity of the extremal flow. We derive an algorithm called COTCOT
(Conditions...
We consider cohomology defined by a system of local Lagrangian and investigate under which conditions the variational Lie derivative of associated local currents is a system of conserved currents. The answer to such a question involves Jacobi equations for the local system. Furthermore, we recall that it was shown by Krupka et al. that the invariance of a closed Helmholtz form of a dynamical form is equivalent with local variationality of the Lie derivative of the dynamical form; we remark that...
A unified geometric approach to nonholonomic constrained mechanical systems is applied to several concrete problems from the classical mechanics of particles and rigid bodies. In every of these examples the given constraint conditions are analysed, a corresponding constraint submanifold in the phase space is considered, the corresponding constrained mechanical system is modelled on the constraint submanifold, the reduced equations of motion of this system (i.e. equations of motion defined on the...
The integrability condition for the Lagrangian implicit differential systems of (TP,ω̇), introduced in [7], is applied for the specialized control theory systems. The Pontryagin maximum principle was reformulated in the framework of implicit differential systems and the corresponding necessary and sufficient conditions were proved. The beginning of the classification list of normal forms for Lagrangian implicit differential systems according to the symplectic equivalence is provided and the corresponding...
We study germs of singular holomorphic vector fields at the origin of of which the linear part is -resonant and which have a polynomial normal form. The formal normalizing diffeomorphism is usually divergent at the origin but there exists holomorphic diffeomorphisms in some “sectorial domains” which transform these vector fields into their normal form. In this article, we study the interplay between the small divisors phenomenon and the Gevrey character of the sectorial normalizing diffeomorphisms....
In this article, a new solution to the steering control problem of nonholonomic systems, which are transformable into chained form is investigated. A smooth super twisting sliding mode control technique is used to steer nonholonomic systems. Firstly, the nonholonomic system is transformed into a chained form system, which is further decomposed into two subsystems. Secondly, the second subsystem is steered to the origin by using smooth super twisting sliding mode control. Finally, the first subsystem...
Currently displaying 1 –
20 of
127