The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 21 –
40 of
127
We consider the motion of a rigid body immersed in an incompressible perfect fluid which occupies a three-dimensional bounded domain. For such a system the Cauchy problem is well-posed locally in time if the initial velocity of the fluid is in the Hölder space . In this paper we prove that the smoothness of the motion of the rigid body may be only limited by the smoothness of the boundaries (of the body and of the domain). In particular for analytic boundaries the motion of the rigid body is analytic...
A mathematical model is proposed in order to describe the behaviour of mechanical systems with constraints.
A numerical technique for solving the classical brachistochrone problem in the calculus of variations is presented. The brachistochrone problem is first formulated as a nonlinear optimal control problem. Application of this method results in the transformation of differential and integral expressions into some algebraic equations to which Newton-type methods can be applied. The method is general, and yields accurate results.
Given a Lagrangian system with non-holonomic constraints we construct an almost product structure on the tangent bundle of the configuration manifold such that the projection of the Euler-Lagrange vector field gives the dynamics of the system. In a degenerate case, we develop a constraint algorithm which determines a final constraint submanifold where a completely consistent dynamics of the initial system exists.
We propose a suitable formulation of the Hamiltonian formalism for Field Theory in terms of Hamiltonian connections and multisymplectic forms where a composite fibered bundle, involving a line bundle, plays the role of an extended configuration bundle. This new approach can be interpreted as a suitable generalization to Field Theory of the homogeneous formalism for Hamiltonian Mechanics. As an example of application, we obtain the expression of a formal energy for a parametrized version of the Hilbert–Einstein...
We show that asserting the regularity (in the sense of Rund) of a first-order parametric multiple-integral variational problem is equivalent to asserting that the differential of the projection of its Hilbert-Carathéodory form is multisymplectic, and is also equivalent to asserting that Dedecker extremals of the latter -form are holonomic.
We present some regularity properties of periodic solutions to a class of singular potential problems and we discuss the existence of a regular solution.
Currently displaying 21 –
40 of
127