The search session has expired. Please query the service again.
Displaying 1741 –
1760 of
2633
The aim of this paper is to study the problem of regularity of solutions in Hencky plasticity. We consider a non-homogeneous material whose elastic-plastic properties change discontinuously. We prove that the displacement solutions belong to the space if the stress solution is continuous and belongs to the interior of the set of admissible stresses, at each point. The part of the functional which describes the work of boundary forces is relaxed.
The aim of this paper is to study the problem of regularity of displacement solutions in Hencky plasticity. We consider a plate made of a non-homogeneous material whose elastic-plastic properties change discontinuously. We prove that the displacement solutions belong to the space if the stress solution is continuous and belongs to the interior of the set of admissible stresses, at each point. The part of the functional which describes the work of boundary forces is relaxed.
The aim of this paper is to find the largest lower semicontinuous minorant of the elastic-plastic energy of a body with fissures. The functional of energy considered is not coercive.
Hard clamped and hard simply supported elastic plate is considered. The mixed finite element analysis combined with some interpolation, proposed by Brezzi, Fortin and Stenberg, is extended to the case of variable thickness and anisotropic material.
A phase field approach for structural topology optimization which allows for topology changes and multiple materials is analyzed. First order optimality conditions are rigorously derived and it is shown via formally matched asymptotic expansions that these conditions converge to classical first order conditions obtained in the context of shape calculus. We also discuss how to deal with triple junctions where e.g. two materials and the void meet. Finally, we present several numerical results for...
As a model for the energy of a brittle elastic body we consider an integral functional consisting of two parts: a volume one (the usual linearly elastic energy) which is quadratic in the strain, and a surface part, which is concentrated along the fractures (i.e. on the discontinuities of the displacement function) and whose density depends on the jump part of the strain. We study the problem of the lower semicontinuous envelope of such a functional under the assumptions that the surface energy density...
Given a Borel function ψ defined on a bounded open set Ω
with Lipschitz boundary and ,
we prove an explicit representation formula for the L1 lower
semicontinuous envelope of Mumford-Shah type functionals
with the obstacle constraint
Multidimensional vectorial non-quasiconvex variational problems are relaxed by means of a generalized-Young-functional technique. Selective first-order optimality conditions, having the form of an Euler-Weiestrass condition involving minors, are formulated in a special, rather a model case when the potential has a polyconvex quasiconvexification.
We define relaxed hyperelastic curve, which is a generalization of relaxed elastic lines, on an oriented surface in three-dimensional Euclidean space E³, and we derive the intrinsic equations for a relaxed hyperelastic curve on a surface. Then, by examining relaxed hyperelastic curves in a plane, on a sphere and on a cylinder, we show that geodesics are relaxed hyperelastic curves in a plane and on a sphere. But on a cylinder, they are relaxed hyperelastic curves only in special cases.
The contribution is devoted to computations of the limit load for a perfectly plastic model with the von Mises yield criterion. The limit factor of a prescribed load is defined by a specific variational problem, the so-called limit analysis problem. This problem is solved in terms of deformation fields by a penalization, the finite element and the semismooth Newton methods. From the numerical solution, we derive a guaranteed upper bound of the limit factor. To achieve more accurate results, a local...
We apply the method of reliable solutions to the bending problem for an elasto-plastic beam, considering the yield function of the von Mises type with uncertain coefficients. The compatibility method is used to find the moments and shear forces. Then we solve a maximization problem for these quantities with respect to the uncertain input data.
Currently displaying 1741 –
1760 of
2633