Approximation of homogeneous measures in the 2-Wasserstein metric.
In this paper, we concern ourselves with uniqueness results for an elliptic-parabolic quasilinear partial differential equation describing, for instance, the pressure of a fluid in a three-dimensional porous medium: within the frame of mathematical modeling of the secondary recovery from oil fields, the handling of the component conservation laws leads to a system including such a pressure equation, locally elliptic or parabolic according to the evolution of the gas phase.
We propose a new formulation of the 3D Boltzmann non linear operator, without assuming Grad's angular cutoff hypothesis, and for intermolecular laws behaving as 1/rs, with s> 2. It involves natural pseudo differential operators, under a form which is analogous to the Landau operator. It may be used in the study of the associated equations, and more precisely in the non homogeneous framework.
Cet article propose d’aborder la question de l’écriture des textes scientifiques en partant d’une méthodologie comparative. En choisissant deux textes assez proches du même auteur sur le même sujet (en l’occurrence des travaux de Navier sur l’écoulement des fluides dans les années 1820), on peut mettre en évidence des variations dans les formulations et dans la composition des textes. Ces différences peuvent parfois être attribuées aux genres des périodiques dans lesquels ils ont paru. Mais surtout,...
This work aims to extend in two distinct directions results recently obtained in [10]. In a first step we focus on the possible extension of our results to the time dependent case. Whereas in the second part some preliminary numerical simulations aim to give orders of magnitudes in terms of numerical costs of direct 3D simulations. We consider, in the first part, the time dependent rough problem for a simplified heat equation in a straight channel that mimics the axial...
The present paper is devoted to the asymptotic analysis of the linear unsteady surface waves. We study two problems concerned with high-frequency surface and submerged disturbances. The two-scale asymptotic series are obtained for the velocity potential. The principal terms in the asymptotics of some hydrodynamical characteristics of the wave motion (the free surface elevation, the energy, etc.) are described.
This study concerns some asymptotic models used to compute the flow outside and inside fractures in a bidimensional porous medium. The flow is governed by the Darcy law both in the fractures and in the porous matrix with large discontinuities in the permeability tensor. These fractures are supposed to have a small thickness with respect to the macroscopic length scale, so that we can asymptotically reduce them to immersed polygonal fault interfaces and the model finally consists in a coupling between...
The paper investigates the asymptotic behavior of a steady flow of an incompressible viscous fluid in a two-dimensional infinite pipe with slip boundary conditions and large flux. The convergence of the solutions to data at infinities is examined. The technique enables computing optimal factors of exponential decay at the outlet and inlet of the pipe which are unsymmetric for nonzero fluxes of the flow. As a corollary, the asymptotic structure of the solutions is obtained. The results show strong...