Application of homotopy analysis method to the unsteady squeezing flow of a second-grade fluid between circular plates.
The goal of this paper is to present a different approach to the homogenization of the Dirichlet boundary value problem in porous medium. Unlike the standard energy method or the method of two-scale convergence, this approach is not based on the weak formulation of the problem but on the very weak formulation. To illustrate the method and its advantages we treat the stationary, incompressible Navier-Stokes system with the non-homogeneous Dirichlet boundary condition in periodic porous medium. The...
In this paper we present an overview of some recent results on applications of knot theory in fluid mechanics, as part of a new discipline called `topological fluid mechanics' (TFM). The choice of the topics covered here is deliberately restricted to those areas that involve mainly a combination of ideal fluid mechanics techniques and knot theory concepts, complemented with a brief description of some other concepts that have important applications in fluid systems. We begin with the concept of...
We consider a linear model of interaction between a viscous incompressible fluid and a thin elastic structure located on a part of the fluid domain boundary, the other part being rigid. After having given an existence and uniqueness result for the direct problem, we study the question of approximate controllability for this system when the control acts as a normal force applied to the structure. The case of an analytic boundary has been studied by Lions and Zuazua in [9] where, in particular,...
We analyze the controllability of the motion of a fluid by means of the action of a vibrating shell coupled at the boundary of the fluid. The model considered is linear. We study its approximate controllability, i.e. whether the fluid may reach a dense set of final configurations at a given time. We show that this problem can be reduced to a unique continuation question for the Stokes system. We prove that this unique continuation property holds generically among analytic domains and therefore,...
In this paper we analyze the stream function-vorticity-pressure method for the Stokes eigenvalue problem. Further, we obtain full order convergence rate of the eigenvalue approximations for the Stokes eigenvalue problem based on asymptotic error expansions for two nonconforming finite elements, and . Using the technique of eigenvalue error expansion, the technique of integral identities and the extrapolation method, we can improve the accuracy of the eigenvalue approximations.
The main goal of this article is to establish a priori and a posteriori error estimates for the numerical approximation of some non linear elliptic problems arising in glaciology. The stationary motion of a glacier is given by a non-newtonian fluid flow model which becomes, in a first two-dimensional approximation, the so-called infinite parallel sided slab model. The approximation of this model is made by a finite element method with piecewise polynomial functions of degree 1. Numerical results...
The main goal of this article is to establish a priori and a posteriori error estimates for the numerical approximation of some non linear elliptic problems arising in glaciology. The stationary motion of a glacier is given by a non-Newtonian fluid flow model which becomes, in a first two-dimensional approximation, the so-called infinite parallel sided slab model. The approximation of this model is made by a finite element method with piecewise polynomial functions of degree 1. Numerical results...
By means of eigenvalue error expansion and integral expansion techniques, we propose and analyze the stream function-vorticity-pressure method for the eigenvalue problem associated with the Stokes equations on the unit square. We obtain an optimal order of convergence for eigenvalues and eigenfuctions. Furthermore, for the bilinear finite element space, we derive asymptotic expansions of the eigenvalue error, an efficient extrapolation and an a posteriori error estimate for the eigenvalue. Finally,...