Asymptotic stability theorems for viscous fluid motions in exterior domains
The present work is devoted to the simulation of a strongly magnetized plasma as a mixture of an ion fluid and an electron fluid. For simplicity reasons, we assume that each fluid is isothermal and is modelized by Euler equations coupled with a term representing the Lorentz force, and we assume that both Euler systems are coupled through a quasi-neutrality constraint of the form ni = ne. The numerical method which is described in the...
We consider an a priori global strong solution to the Navier-Stokes equations. We prove it behaves like a small solution for large time. Combining this asymptotics with uniqueness and averaging in time properties, we obtain the stability of such a global solution.
Physics based simulation is widely seen as a way of increasing the information about aircraft designs earlier in their definition, thus helping with the avoidance of unanticipated problems as the design is refined. This paper reports on an effort to assess the automated use of computational fluid dynamics level aerodynamics for the development of tables for flight dynamics analysis at the conceptual stage. These tables are then used to calculate...
We consider the flow of a viscous incompressible fluid in a rigid homogeneous porous medium provided with mixed boundary conditions. Since the boundary pressure can present high variations, the permeability of the medium also depends on the pressure, so that the model is nonlinear. A posteriori estimates allow us to omit this dependence where the pressure does not vary too much. We perform the numerical analysis of a spectral element discretization of the simplified model. Finally we propose a strategy...