Displaying 661 – 680 of 3470

Showing per page

Control of Transonic Shock Positions

Olivier Pironneau (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We wish to show how the shock position in a nozzle could be controlled. Optimal control theory and algorithm is applied to the transonic equation. The difficulty is that the derivative with respect to the shock position involves a Dirac mass. The one dimensional case is solved, the two dimensional one is analyzed .

Control of underwater vehicles in inviscid fluids

Rodrigo Lecaros, Lionel Rosier (2014)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we investigate the controllability of an underwater vehicle immersed in an infinite volume of an inviscid fluid whose flow is assumed to be irrotational. Taking as control input the flow of the fluid through a part of the boundary of the rigid body, we obtain a finite-dimensional system similar to Kirchhoff laws in which the control input appears through both linear terms (with time derivative) and bilinear terms. Applying Coron’s return method, we establish some local controllability...

Contrôle par les coefficients dans le modèle Elrod-Adams

Mohamed El Alaoui Talibi, Abdellah El Kacimi (2001)

ESAIM: Control, Optimisation and Calculus of Variations

Dans ce papier, nous étudions un problème de contrôle par les coefficients issu de la lubrification élastohydrodynamique. La variable de contrôle est l’épaisseur du fluide. Le phénomène de cavitation est pris en compte par le modèle Elrod-Adams, connu pour ses performances dans la conservation des débits d’entrée et de sortie. L’idée est de régulariser dans l’équation d’état le graphe d’Heaviside, en l’approchant par une suite de fonctions monotones et régulières. Nous dérivons les conditions d’optimalité...

Contrôle par les coefficients dans le modèle elrod-adams

Mohamed El Alaoui Talibi, Abdellah El Kacimi (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The purpose of this paper is to study a control by coefficients problem issued from the elastohydrodynamic lubrication. The control variable is the film thickness.The cavitation phenomenon takes place and described by the Elrod-Adams model, suggested in preference to the classical variational inequality due to its ability to describe input and output flow. The idea is to use the penalization in the state equation  by approximating the Heaviside graph whith a sequence of monotone and regular functions....

Controllability of 3D incompressible Euler equations by a finite-dimensional external force

Hayk Nersisyan (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we study the control system associated with the incompressible 3D Euler system. We show that the velocity field and pressure of the fluid are exactly controllable in projections by the same finite-dimensional control. Moreover, the velocity is approximately controllable. We also prove that 3D Euler system is not exactly controllable by a finite-dimensional external force.

Controllability of 3D low Reynolds number swimmers

Jérôme Lohéac, Alexandre Munnier (2014)

ESAIM: Control, Optimisation and Calculus of Variations

In this article, we consider a swimmer (i.e. a self-deformable body) immersed in a fluid, the flow of which is governed by the stationary Stokes equations. This model is relevant for studying the locomotion of microorganisms or micro robots for which the inertia effects can be neglected. Our first main contribution is to prove that any such microswimmer has the ability to track, by performing a sequence of shape changes, any given trajectory in the fluid. We show that, in addition, this can be done...

Controllability of three-dimensional Navier–Stokes equations and applications

Armen Shirikyan (2005/2006)

Séminaire Équations aux dérivées partielles

We formulate two results on controllability properties of the 3D Navier–Stokes (NS) system. They concern the approximate controllability and exact controllability in finite-dimensional projections of the problem in question. As a consequence, we obtain the existence of a strong solution of the Cauchy problem for the 3D NS system with an arbitrary initial function and a large class of right-hand sides. We also discuss some qualitative properties of admissible weak solutions for randomly forced NS...

Controllability properties of a class of systems modeling swimming microscopic organisms

Mario Sigalotti, Jean-Claude Vivalda (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider a finite-dimensional model for the motion of microscopic organisms whose propulsion exploits the action of a layer of cilia covering its surface. The model couples Newton's laws driving the organism, considered as a rigid body, with Stokes equations governing the surrounding fluid. The action of the cilia is described by a set of controlled velocity fields on the surface of the organism. The first contribution of the paper is the proof that such a system is generically controllable...

Controlling Nanoparticles Formation in Molten Metallic Bilayers by Pulsed-Laser Interference Heating

M. Khenner, S. Yadavali, R. Kalyanaraman (2012)

Mathematical Modelling of Natural Phenomena

The impacts of the two-beam interference heating on the number of core-shell and embedded nanoparticles and on nanostructure coarsening are studied numerically based on the non-linear dynamical model for dewetting of the pulsed-laser irradiated, thin (< 20 nm) metallic bilayers. The model incorporates thermocapillary forces and disjoining pressures, and assumes dewetting from the optically transparent substrate atop of the reflective support layer,...

Convection with temperature dependent viscosity in a porous medium: nonlinear stability and the Brinkman effect.

Lorna Richardson, Brian Straughan (1993)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We establish a nonlinear energy stability theory for the problem of convection in a porous medium when the viscosity depends on the temperature. This is, in fact, the situation which is true in real life and has many applications to geophysics. The nonlinear analysis presented here would appear to require the presence of a Brinkman term in the momentum equation, rather than just the normal form of Darcy's law.

Convective Instability of Reaction Fronts in Porous Media

K. Allali, A. Ducrot, A. Taik, V. Volpert (2010)

Mathematical Modelling of Natural Phenomena

We study the influence of natural convection on stability of reaction fronts in porous media. The model consists of the heat equation, of the equation for the depth of conversion and of the equations of motion under the Darcy law. Linear stability analysis of the problem is fulfilled, the stability boundary is found. Direct numerical simulations are performed and compared with the linear stability analysis.

Convergence analysis of a locally stabilized collocated finite volume scheme for incompressible flows

Robert Eymard, Raphaèle Herbin, Jean-Claude Latché, Bruno Piar (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

We present and analyse in this paper a novel cell-centered collocated finite volume scheme for incompressible flows. Its definition involves a partition of the set of control volumes; each element of this partition is called a cluster and consists in a few neighbouring control volumes. Under a simple geometrical assumption for the clusters, we obtain that the pair of discrete spaces associating the classical cell-centered approximation for the velocities and cluster-wide constant pressures is inf-sup...

Convergence of a finite element discretization of the Navier-Stokes equations in vorticity and stream function formulation

Mohamed Amara, Christine Bernardi (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The standard discretization of the Stokes and Navier–Stokes equations in vorticity and stream function formulation by affine finite elements is known for its bad convergence. We present here a modified discretization, we prove that the convergence is improved and we establish a priori error estimates.

Convergence of a fully discrete finite element method for a degenerate parabolic system modelling nematic liquid crystals with variable degree of orientation

John W. Barrett, Xiaobing Feng, Andreas Prohl (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider a degenerate parabolic system which models the evolution of nematic liquid crystal with variable degree of orientation. The system is a slight modification to that proposed in [Calderer et al., SIAM J. Math. Anal.33 (2002) 1033–1047], which is a special case of Ericksen's general continuum model in [Ericksen, Arch. Ration. Mech. Anal.113 (1991) 97–120]. We prove the global existence of weak solutions by passing to the limit in a regularized system. Moreover, we propose a practical...

Currently displaying 661 – 680 of 3470