Foreword [Proceedings of the Eighth International School on Mathematical Theory in Fluid Mechanics in memory of Professor Jindřich Nečas]
We present in this paper the formal passage from a kinetic model to the incompressible Navier−Stokes equations for a mixture of monoatomic gases with different masses. The starting point of this derivation is the collection of coupled Boltzmann equations for the mixture of gases. The diffusion coefficients for the concentrations of the species, as well as the ones appearing in the equations for velocity and temperature, are explicitly computed under the Maxwell molecule assumption in terms of the...
The existence of a global motion of magnetohydrodynamic fluid in a domain bounded by a free surface and under the external electrodynamic field is proved. The motion is such that the velocity and magnetic field are small in the H³-space.
We establish the existence and stability of multidimensional transonic shocks (hyperbolic-elliptic shocks), which are not nearly orthogonal to the flow direction, for the Euler equations for steady compressible potential fluids in unbounded domains in . The Euler equations can be written as a second order nonlinear equation of mixed hyperbolic-elliptic type for the velocity potential. The transonic shock problem can be formulated into the following free boundary problem: The free boundary is the...
In this article, we analyze the stability of various numerical schemes for differential models of viscoelastic fluids. More precisely, we consider the prototypical Oldroyd-B model, for which a free energy dissipation holds, and we show under which assumptions such a dissipation is also satisfied for the numerical scheme. Among the numerical schemes we analyze, we consider some discretizations based on the log-formulation of the Oldroyd-B system proposed by Fattal and Kupferman in [J. Non-Newtonian...
We prove the existence of regular solution to a system of nonlinear equations describing the steady motions of a certain class of non-Newtonian fluids in two dimensions. The equations are completed by requirement that all functions are periodic.