The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 1501 –
1520 of
3483
We present two-dimensional simulations of chemotactic self-propelled bacteria swimming in
a viscous fluid. Self-propulsion is modelled by a couple of forces of same intensity and
opposite direction applied on the rigid bacterial body and on an associated region in the
fluid representing the flagellar bundle. The method for solving the fluid flow and the
motion of the bacteria is based on a variational formulation written on the whole domain,
strongly...
In this paper, we are interested in the modelling and the finite element approximation of a petroleum reservoir, in axisymmetric form. The flow in the porous medium is governed by the Darcy-Forchheimer equation coupled with a rather exhaustive energy equation. The semi-discretized problem is put under a mixed variational formulation, whose approximation is achieved by means of conservative Raviart-Thomas elements for the fluxes and of piecewise constant elements for the pressure and the temperature....
In this paper, we are interested in the modelling and the finite element
approximation of a petroleum reservoir, in axisymmetric form. The flow in the
porous medium is governed by the Darcy-Forchheimer equation coupled with a
rather exhaustive energy equation. The semi-discretized problem is put under a
mixed variational formulation, whose approximation is achieved by means of
conservative Raviart-Thomas elements for the fluxes and of piecewise constant
elements for the pressure and the temperature....
A general setting is proposed for the mixed finite element approximations of elliptic differential problems involving a unilateral boundary condition. The treatment covers the Signorini problem as well as the unilateral contact problem with or without friction. Existence, uniqueness for both the continuous and the discrete problem as well as error estimates are established in a general framework. As an application, the approximation of the Signorini problem by the lowest order mixed finite element...
A general setting is proposed for the mixed finite element approximations of
elliptic differential problems involving a unilateral boundary condition. The
treatment covers the Signorini problem as well as the unilateral contact
problem with or without friction. Existence, uniqueness for both the
continuous and the discrete problem as well as error estimates are established
in a general framework. As an application, the approximation of the Signorini
problem by the lowest order mixed finite element...
The numerical solution of the flow of a liquid crystal governed by a particular instance of the Ericksen–Leslie equations is considered. Convergence results for this system rely crucially upon energy estimates which involve norms of the director field. We show how a mixed method may be used to eliminate the need for Hermite finite elements and establish convergence of the method.
The numerical solution of the flow of a liquid crystal governed
by a particular instance of the Ericksen–Leslie equations is considered.
Convergence results for this system rely crucially upon energy
estimates which involve H2(Ω) norms of the director field. We
show how a mixed method may be used to eliminate the need for
Hermite finite elements and establish convergence of the method.
We describe behavior of the air-coal mixture using the Navier–Stokes equations for gas and particle phases, accompanied by a turbulence model. The undergoing chemical reactions are described by the Arrhenian kinetics (reaction rate proportional to where is temperature). We also consider the heat transfer via conduction and radiation. Moreover we use improved turbulence-chemistry interactions for reaction terms. The system of PDEs is discretized using the finite volume method (FVM) and an advection...
Many electrorheological fluids are suspensions consisting of solid particles and a carrier oil. If such a suspension is exposed to a strong electric field the effective viscosity increases dramatically. In this paper we first derive a model which captures this behaviour. For the resulting system of equations we then prove local in time existence of strong solutions for large data. For these solutions we finally derive error estimates for a fully implicit time-discretization.
The paper is devoted to mathematical modelling and numerical computations of a
nonstationary
free boundary problem. The model is based on processes of molecular diffusion of
some
products of chemical decomposition of a solid organic substance concentrated in
bottom sediments.
It takes into account non-stationary multi-component and multi-stage chemical
decomposition of
organic substances and the processes of sorption desorption under aerobic and
anaerobic conditions.
Such a model allows one to...
Currently displaying 1501 –
1520 of
3483