Displaying 41 – 60 of 168

Showing per page

A new approach to chordal graphs

Ladislav Nebeský (2007)

Czechoslovak Mathematical Journal

By a chordal graph is meant a graph with no induced cycle of length 4 . By a ternary system is meant an ordered pair ( W , T ) , where W is a finite nonempty set, and T W × W × W . Ternary systems satisfying certain axioms (A1)–(A5) are studied in this paper; note that these axioms can be formulated in a language of the first-order logic. For every finite nonempty set W , a bijective mapping from the set of all connected chordal graphs G with V ( G ) = W onto the set of all ternary systems ( W , T ) satisfying the axioms (A1)–(A5) is...

A Note on a Theorem of Lion

Zofia Ambroży (2013)

Bulletin of the Polish Academy of Sciences. Mathematics

In this note we bind together Wilkie's complement theorem with Lion's theorem on geometric, regular and 0-regular families of functions.

A note on generic subsets of definable groups

Mário J. Edmundo, G. Terzo (2011)

Fundamenta Mathematicae

We generalize the theory of generic subsets of definably compact definable groups to arbitrary o-minimal structures. This theory is a crucial part of the solution to Pillay's conjecture connecting definably compact definable groups with Lie groups.

A note on noninterpretability in o-minimal structures

Ricardo Bianconi (1998)

Fundamenta Mathematicae

We prove that if M is an o-minimal structure whose underlying order is dense then Th(M) does not interpret the theory of an infinite discretely ordered structure. We also make a conjecture concerning the class of the theory of an infinite discretely ordered o-minimal structure.

A note on Steinhorn's omitting types theorem

Akito Tsuboi (2009)

Colloquium Mathematicae

Let p(x) be a nonprincipal type. We give a sufficient condition for a model M to have a proper elementary extension omitting p(x). As a corollary, we obtain a generalization of Steinhorn's omitting types theorem to the supersimple case.

A note on Sugihara algebras.

Josep M. Font, Gonzalo Rodríguez Pérez (1992)

Publicacions Matemàtiques

In [4] Blok and Pigozzi prove syntactically that RM, the propositional calculus also called R-Mingle, is algebraizable, and as a consequence there is a unique quasivariety (the so-called equivalent quasivariety semantics) associated to it. In [3] it is stated that this quasivariety is the variety of Sugihara algebras. Starting from this fact, in this paper we present an equational base for this variety obtained as a subvariety of the variety of R-algebras, found in [7] to be associated in the same...

Currently displaying 41 – 60 of 168