Displaying 21 – 40 of 168

Showing per page

A gradient inequality at infinity for tame functions.

Didier D'Acunto, Vincent Grandjean (2005)

Revista Matemática Complutense

Let f be a C1 function defined over Rn and definable in a given o-minimal structure M expanding the real field. We prove here a gradient-like inequality at infinity in a neighborhood of an asymptotic critical value c. When f is C2 we use this inequality to discuss the trivialization by the gradient flow of f in a neighborhood of a regular asymptotic critical level.

A graphical representation of relational formulae with complementation

Domenico Cantone, Andrea Formisano, Marianna Nicolosi Asmundo, Eugenio Giovanni Omodeo (2012)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

We study translations of dyadic first-order sentences into equalities between relational expressions. The proposed translation techniques (which work also in the converse direction) exploit a graphical representation of formulae in a hybrid of the two formalisms. A major enhancement relative to previous work is that we can cope with the relational complement construct and with the negation connective. Complementation is handled by adopting a Smullyan-like uniform notation to classify and decompose...

A graphical representation of relational formulae with complementation∗

Domenico Cantone, Andrea Formisano, Marianna Nicolosi Asmundo, Eugenio Giovanni Omodeo (2012)

RAIRO - Theoretical Informatics and Applications

We study translations of dyadic first-order sentences into equalities between relational expressions. The proposed translation techniques (which work also in the converse direction) exploit a graphical representation of formulae in a hybrid of the two formalisms. A major enhancement relative to previous work is that we can cope with the relational complement construct and with the negation connective. Complementation is handled by adopting a Smullyan-like...

A Hanf number for saturation and omission

John T. Baldwin, Saharon Shelah (2011)

Fundamenta Mathematicae

Suppose t = (T,T₁,p) is a triple of two countable theories T ⊆ T₁ in vocabularies τ ⊂ τ₁ and a τ₁-type p over the empty set. We show that the Hanf number for the property ’there is a model M₁ of T₁ which omits p, but M₁ ↾ τ is saturated’ is essentially equal to the Löwenheim number of second order logic. In Section 4 we make exact computations of these Hanf numbers and note some distinctions between ’first order’ and ’second order quantification’. In particular, we show that if κ is uncountable,...

A linear extension operator for Whitney fields on closed o-minimal sets

Wiesław Pawłucki (2008)

Annales de l’institut Fourier

A continuous linear extension operator, different from Whitney’s, for 𝒞 p -Whitney fields (p finite) on a closed o-minimal subset of n is constructed. The construction is based on special geometrical properties of o-minimal sets earlier studied by K. Kurdyka with the author.

A López-Escobar theorem for metric structures, and the topological Vaught conjecture

Samuel Coskey, Martino Lupini (2016)

Fundamenta Mathematicae

We show that a version of López-Escobar’s theorem holds in the setting of model theory for metric structures. More precisely, let denote the Urysohn sphere and let Mod(,) be the space of metric -structures supported on . Then for any Iso()-invariant Borel function f: Mod(,) → [0,1], there exists a sentence ϕ of ω ω such that for all M ∈ Mod(,) we have f ( M ) = ϕ M . This answers a question of Ivanov and Majcher-Iwanow. We prove several consequences, for example every orbit equivalence relation of a Polish group...

A model-theoretic Baire category theorem for simple theories and its applications

Ziv Shami (2013)

Fundamenta Mathematicae

We prove a model-theoretic Baire category theorem for τ ̃ l o w f -sets in a countable simple theory in which the extension property is first-order and show some of its applications. We also prove a trichotomy for minimal types in countable nfcp theories: either every type that is internal in a minimal type is essentially 1-based by means of the forking topologies, or T interprets an infinite definable 1-based group of finite D-rank or T interprets a strongly minimal formula.

Currently displaying 21 – 40 of 168