On elementary cuts in models of arithmetic
In the early 1970’s S. Tennenbaum proved that all countable models of PA₁¯ + ∀₁ -Th(ℕ) are embeddable into the reduced product , where ℱ is the cofinite filter. In this paper we show that if M is a model of PA¯ + ∀₁ - Th(ℕ), and |M| = ℵ₁, then M is embeddable into , where D is any regular filter on ω.
Let κ be an uncountable regular cardinal. Call an equivalence relation on functions from κ into 2 second order definable over H(κ) if there exists a second order sentence ϕ and a parameter P ⊆ H(κ) such that functions f and g from κ into 2 are equivalent iff the structure ⟨ H(κ), ∈, P, f, g ⟩ satisfies ϕ. The possible numbers of equivalence classes of second order definable equivalence relations include all the nonzero cardinals at most κ⁺. Additionally, the possibilities are closed under unions...
We prove that if ℳ = (M,≤,+,...) is a weakly o-minimal non-valuational structure expanding an ordered group (M,≤,+), then its expansion by a family of "non-valuational" unary predicates remains non-valuational. The paper is based on the author's earlier work on strong cell decomposition for weakly o-minimal non-valuational expansions of ordered groups.
Continuing the earlier research in [10] we give some information on extending automorphisms of models of PA to end extensions and cofinal extensions.
We prove a theorem describing the equational theory of all modes of a fixed type. We use this result to show that a free mode with at least one basic operation of arity at least three, over a set of cardinality at least two, does not satisfy identities selected by ’A. Szendrei in Identities satisfied by convex linear forms, Algebra Universalis 12 (1981), 103–122, that hold in any subreduct of a semimodule over a commutative semiring. This gives a negative answer to the question raised by A. Romanowska:...
We begin a systematic study of the category GTS of generalized topological spaces (in the sense of H. Delfs and M. Knebusch) and their strictly continuous mappings. We reformulate the axioms. Generalized topology is found to be connected with the concept of a bornological universe. Both GTS and its full subcategory SS of small spaces are topological categories. The second part of this paper will also appear in this journal.
This is the second part of A. Piękosz [Ann. Polon. Math. 107 (2013), 217-241]. The categories GTS(M), with M a non-empty set, are shown to be topological. Several related categories are proved to be finitely complete. Locally small and nice weakly small spaces can be described using certain sublattices of power sets. Some important elements of the theory of locally definable and weakly definable spaces are reconstructed in a wide context of structures with topologies.
We prove the o-minimal generalization of the Łojasiewicz inequality , with , in a neighborhood of , where is real analytic at and . We deduce, as in the analytic case, that trajectories of the gradient of a function definable in an o-minimal structure are of uniformly bounded length. We obtain also that the gradient flow gives a retraction onto levels of such functions.