Reduced products of saturated intuitionistic theories.
Defining an (n+1)-ary superposition operation on the set of all n-ary terms of type τ, one obtains an algebra of type (n+1,0,...,0). The algebra n-clone τ is free in the variety of all Menger algebras ([9]). Using the operation there are different possibilities to define binary associative operations on the set and on the cartesian power . In this paper we study idempotent and regular elements as well as Green’s relations in semigroups of terms with these binary associative operations...
In our main result, we establish a formal connection between Lindström quantifiers with respect to regular languages and the double semidirect product of finite monoids with a distinguished set of generators. We use this correspondence to characterize the expressive power of Lindström quantifiers associated with a class of regular languages.
In our main result, we establish a formal connection between Lindström quantifiers with respect to regular languages and the double semidirect product of finite monoids with a distinguished set of generators. We use this correspondence to characterize the expressive power of Lindström quantifiers associated with a class of regular languages.
Let 𝒦 be a class of finite relational structures. We define ℰ𝒦 to be the class of finite relational structures A such that A/E ∈ 𝒦, where E is an equivalence relation defined on the structure A. Adding arbitrary linear orderings to structures from ℰ𝒦, we get the class 𝒪ℰ𝒦. If we add linear orderings to structures from ℰ𝒦 such that each E-equivalence class is an interval then we get the class 𝒞ℰ[𝒦*]. We provide a list of Fraïssé classes among ℰ𝒦, 𝒪ℰ𝒦 and 𝒞ℰ[𝒦*]. In addition, we classify...
An example of a non-zero non-atomic translation-invariant Borel measure on the Banach space is constructed in Solovay’s model. It is established that, for 1 ≤ p < ∞, the condition "-almost every element of has a property P" implies that “almost every” element of (in the sense of [4]) has the property P. It is also shown that the converse is not valid.
In this paper, we shall study type-definable groups in a simple theory with respect to one or several stable reducts. While the original motivation came from the analysis of definable groups in structures obtained by Hrushovski's amalgamation method, the notions introduced are in fact more general, and in particular can be applied to certain expansions of algebraically closed fields by operators.
In this paper, we consider the following basic question. Let A be an L-structure and let ψ be an infinitary sentence in the language L∪R, where R is a new relation symbol. When is it the case that for every B ≅ A, there is a relation R such that (B,R) ⊨ ψ and ? We succeed in giving necessary and sufficient conditions in the case where ψ is a “recursive” infinitary sentence. (A recursive infinitary formula is an infinitary formula with recursive disjunctions and conjunctions.) We consider also...
In [AK], we asked when a recursive structure A and a sentence φ, with a new relation symbol, have the following property: for each ℬ≅ A there is a relation S such that S is recursive relative to ℬ and ℬ,S)⊨ φ. Here we consider several related properties, in which there is a uniform procedure for determining S from ℬ ≅A, or from ℬ,¯b)≅(A,ā), for some fixed sequence of parameters ā from A; or in which ℬ and S are required to be recursive. We investigate relationships between these properties, showing...
We apply van den Dries's test to the class of algebras (over algebraically closed fields) which are not representation-directed and prove that this class is axiomatizable by a positive quantifier-free formula. It follows that the representation-directed algebras form an open ℤ-scheme.
Let V be a valuation ring in an algebraically closed field K with the residue field R. Assume that A is a V-order such that the R-algebra Ā obtained from A by reduction modulo the radical of V is triangular and representation-finite. Then the K-algebra KA ≅ A ⊗V is again triangular and representation-finite. It follows by the van den Dries’s test that triangular representation-finite algebras form an open scheme.