Displaying 21 – 40 of 82

Showing per page

Degree polynomial for vertices in a graph and its behavior under graph operations

Reza Jafarpour-Golzari (2022)

Commentationes Mathematicae Universitatis Carolinae

We introduce a new concept namely the degree polynomial for the vertices of a simple graph. This notion leads to a concept, namely, the degree polynomial sequence which is stronger than the concept of degree sequence. After obtaining the degree polynomial sequence for some well-known graphs, we prove a theorem which gives a necessary condition for the realizability of a sequence of polynomials with positive integer coefficients. Also we calculate the degree polynomial for the vertices of the join,...

Degree sequences of graphs containing a cycle with prescribed length

Jian Hua Yin (2009)

Czechoslovak Mathematical Journal

Let r 3 , n r and π = ( d 1 , d 2 , ... , d n ) be a non-increasing sequence of nonnegative integers. If π has a realization G with vertex set V ( G ) = { v 1 , v 2 , ... , v n } such that d G ( v i ) = d i for i = 1 , 2 , ... , n and v 1 v 2 v r v 1 is a cycle of length r in G , then π is said to be potentially C r ' ' -graphic. In this paper, we give a characterization for π to be potentially C r ' ' -graphic.

Degree Sequences of Monocore Graphs

Allan Bickle (2014)

Discussiones Mathematicae Graph Theory

A k-monocore graph is a graph which has its minimum degree and degeneracy both equal to k. Integer sequences that can be the degree sequence of some k-monocore graph are characterized as follows. A nonincreasing sequence of integers d0, . . . , dn is the degree sequence of some k-monocore graph G, 0 ≤ k ≤ n − 1, if and only if k ≤ di ≤ min {n − 1, k + n − i} and ⨊di = 2m, where m satisfies [...] ≤ m ≤ k ・ n − [...] .

Degree sums of adjacent vertices for traceability of claw-free graphs

Tao Tian, Liming Xiong, Zhi-Hong Chen, Shipeng Wang (2022)

Czechoslovak Mathematical Journal

The line graph of a graph G , denoted by L ( G ) , has E ( G ) as its vertex set, where two vertices in L ( G ) are adjacent if and only if the corresponding edges in G have a vertex in common. For a graph H , define σ ¯ 2 ( H ) = min { d ( u ) + d ( v ) : u v E ( H ) } . Let H be a 2-connected claw-free simple graph of order n with δ ( H ) 3 . We show that, if σ ¯ 2 ( H ) 1 7 ( 2 n - 5 ) and n is sufficiently large, then either H is traceable or the Ryjáček’s closure cl ( H ) = L ( G ) , where G is an essentially 2 -edge-connected triangle-free graph that can be contracted to one of the two graphs of order 10 which have...

Degree-continuous graphs

John Gimbel, Ping Zhang (2001)

Czechoslovak Mathematical Journal

A graph G is degree-continuous if the degrees of every two adjacent vertices of G differ by at most 1. A finite nonempty set S of integers is convex if k S for every integer k with min ( S ) k max ( S ) . It is shown that for all integers r > 0 and s 0 and a convex set S with min ( S ) = r and max ( S ) = r + s , there exists a connected degree-continuous graph G with the degree set S and diameter 2 s + 2 . The minimum order of a degree-continuous graph with a prescribed degree set is studied. Furthermore, it is shown that for every graph G and convex set S of...

Extremum degree sets of irregular oriented graphs and pseudodigraphs

Zyta Dziechcińska-Halamoda, Zofia Majcher, Jerzy Michael, Zdzisław Skupień (2006)

Discussiones Mathematicae Graph Theory

A digraph in which any two vertices have distinct degree pairs is called irregular. Sets of degree pairs for all irregular oriented graphs (also loopless digraphs and pseudodigraphs) with minimum and maximum size are determined. Moreover, a method of constructing corresponding irregular realizations of those sets is given.

Functions on adjacent vertex degrees of trees with given degree sequence

Hua Wang (2014)

Open Mathematics

In this note we consider a discrete symmetric function f(x, y) where f ( x , a ) + f ( y , b ) f ( y , a ) + f ( x , b ) f o r a n y x y a n d a b , associated with the degrees of adjacent vertices in a tree. The extremal trees with respect to the corresponding graph invariant, defined as u v E ( T ) f ( d e g ( u ) , d e g ( v ) ) , are characterized by the “greedy tree” and “alternating greedy tree”. This is achieved through simple generalizations of previously used ideas on similar questions. As special cases, the already known extremal structures of the Randic index follow as corollaries. The extremal structures...

Graphic sequences of trees and a problem of Frobenius

Gautam Gupta, Puneet Joshi, Amitabha Tripathi (2007)

Czechoslovak Mathematical Journal

We give a necessary and sufficient condition for the existence of a tree of order n with a given degree set. We relate this to a well-known linear Diophantine problem of Frobenius.

Heavy Subgraph Conditions for Longest Cycles to Be Heavy in Graphs

Binlong Lia, Shenggui Zhang (2016)

Discussiones Mathematicae Graph Theory

Let G be a graph on n vertices. A vertex of G with degree at least n/2 is called a heavy vertex, and a cycle of G which contains all the heavy vertices of G is called a heavy cycle. In this note, we characterize graphs which contain no heavy cycles. For a given graph H, we say that G is H-heavy if every induced subgraph of G isomorphic to H contains two nonadjacent vertices with degree sum at least n. We find all the connected graphs S such that a 2-connected graph G being S-heavy implies any longest...

Heavy subgraph pairs for traceability of block-chains

Binlong Li, Hajo Broersma, Shenggui Zhang (2014)

Discussiones Mathematicae Graph Theory

A graph is called traceable if it contains a Hamilton path, i.e., a path containing all its vertices. Let G be a graph on n vertices. We say that an induced subgraph of G is o−1-heavy if it contains two nonadjacent vertices which satisfy an Ore-type degree condition for traceability, i.e., with degree sum at least n−1 in G. A block-chain is a graph whose block graph is a path, i.e., it is either a P1, P2, or a 2-connected graph, or a graph with at least one cut vertex and exactly two end-blocks....

In-degree sequence in a general model of a random digraph

Zbigniew Palka, Monika Sperling (2006)

Discussiones Mathematicae Graph Theory

A general model of a random digraph D(n,P) is considered. Based on a precise estimate of the asymptotic behaviour of the distribution function of the binomial law, a problem of the distribution of extreme in-degrees of D(n,P) is discussed.

Currently displaying 21 – 40 of 82