Displaying 261 – 280 of 321

Showing per page

The connected forcing connected vertex detour number of a graph

A.P. Santhakumaran, P. Titus (2011)

Discussiones Mathematicae Graph Theory

For any vertex x in a connected graph G of order p ≥ 2, a set S of vertices of V is an x-detour set of G if each vertex v in G lies on an x-y detour for some element y in S. A connected x-detour set of G is an x-detour set S such that the subgraph G[S] induced by S is connected. The minimum cardinality of a connected x-detour set of G is the connected x-detour number of G and is denoted by cdₓ(G). For a minimum connected x-detour set Sₓ of G, a subset T ⊆ Sₓ is called a connected x-forcing subset...

The diameter of paired-domination vertex critical graphs

Michael A. Henning, Christina M. Mynhardt (2008)

Czechoslovak Mathematical Journal

In this paper we continue the study of paired-domination in graphs introduced by Haynes and Slater (Networks 32 (1998), 199–206). A paired-dominating set of a graph G with no isolated vertex is a dominating set of vertices whose induced subgraph has a perfect matching. The paired-domination number of G , denoted by γ pr ( G ) , is the minimum cardinality of a paired-dominating set of G . The graph G is paired-domination vertex critical if for every vertex v of G that is not adjacent to a vertex of degree one,...

The directed distance dimension of oriented graphs

Gary Chartrand, Michael Raines, Ping Zhang (2000)

Mathematica Bohemica

For a vertex v of a connected oriented graph D and an ordered set W = { w 1 , w 2 , , w k } of vertices of D , the (directed distance) representation of v with respect to W is the ordered k -tuple r ( v | W ) = ( d ( v , w 1 ) , d ( v , w 2 ) , , d ( v , w k ) ) , where d ( v , w i ) is the directed distance from v to w i . The set W is a resolving set for D if every two distinct vertices of D have distinct representations. The minimum cardinality of a resolving set for D is the (directed distance) dimension dim ( D ) of D . The dimension of a connected oriented graph need not be defined. Those oriented graphs...

The directed geodetic structure of a strong digraph

Ladislav Nebeský (2004)

Czechoslovak Mathematical Journal

By a ternary structure we mean an ordered pair ( U 0 , T 0 ) , where U 0 is a finite nonempty set and T 0 is a ternary relation on U 0 . A ternary structure ( U 0 , T 0 ) is called here a directed geodetic structure if there exists a strong digraph D with the properties that V ( D ) = U 0 and T 0 ( u , v , w ) if and only if d D ( u , v ) + d D ( v , w ) = d D ( u , w ) for all u , v , w U 0 , where d D denotes the (directed) distance function in D . It is proved in this paper that there exists no sentence 𝐬 of the language of the first-order logic such that a ternary structure is a directed geodetic structure if and only if it satisfies...

The edge C₄ graph of some graph classes

Manju K. Menon, A. Vijayakumar (2010)

Discussiones Mathematicae Graph Theory

The edge C₄ graph of a graph G, E₄(G) is a graph whose vertices are the edges of G and two vertices in E₄(G) are adjacent if the corresponding edges in G are either incident or are opposite edges of some C₄. In this paper, we show that there exist infinitely many pairs of non isomorphic graphs whose edge C₄ graphs are isomorphic. We study the relationship between the diameter, radius and domination number of G and those of E₄(G). It is shown that for any graph G without isolated vertices, there...

The edge geodetic number and Cartesian product of graphs

A.P. Santhakumaran, S.V. Ullas Chandran (2010)

Discussiones Mathematicae Graph Theory

For a nontrivial connected graph G = (V(G),E(G)), a set S⊆ V(G) is called an edge geodetic set of G if every edge of G is contained in a geodesic joining some pair of vertices in S. The edge geodetic number g₁(G) of G is the minimum order of its edge geodetic sets. Bounds for the edge geodetic number of Cartesian product graphs are proved and improved upper bounds are determined for a special class of graphs. Exact values of the edge geodetic number of Cartesian product are obtained for several...

The forcing convexity number of a graph

Gary Chartrand, Ping Zhang (2001)

Czechoslovak Mathematical Journal

For two vertices u and v of a connected graph G , the set I ( u , v ) consists of all those vertices lying on a u v geodesic in G . For a set S of vertices of G , the union of all sets I ( u , v ) for u , v S is denoted by I ( S ) . A set S is a convex set if I ( S ) = S . The convexity number c o n ( G ) of G is the maximum cardinality of a proper convex set of G . A convex set S in G with | S | = c o n ( G ) is called a maximum convex set. A subset T of a maximum convex set S of a connected graph G is called a forcing subset for S if S is the unique maximum convex set...

The forcing dimension of a graph

Gary Chartrand, Ping Zhang (2001)

Mathematica Bohemica

For an ordered set W = { w 1 , w 2 , , w k } of vertices and a vertex v in a connected graph G , the (metric) representation of v with respect to W is the k -vector r ( v | W ) = ( d ( v , w 1 ) , d ( v , w 2 ) , , d ( v , w k ) ), where d ( x , y ) represents the distance between the vertices x and y . The set W is a resolving set for G if distinct vertices of G have distinct representations. A resolving set of minimum cardinality is a basis for G and the number of vertices in a basis is its (metric) dimension dim ( G ) . For a basis W of G , a subset S of W is called a forcing subset of W if W is...

The forcing geodetic number of a graph

Gary Chartrand, Ping Zhang (1999)

Discussiones Mathematicae Graph Theory

For two vertices u and v of a graph G, the set I(u, v) consists of all vertices lying on some u-v geodesic in G. If S is a set of vertices of G, then I(S) is the union of all sets I(u,v) for u, v ∈ S. A set S is a geodetic set if I(S) = V(G). A minimum geodetic set is a geodetic set of minimum cardinality and this cardinality is the geodetic number g(G). A subset T of a minimum geodetic set S is called a forcing subset for S if S is the unique minimum geodetic set containing T. The forcing geodetic...

The forcing steiner number of a graph

A.P. Santhakumaran, J. John (2011)

Discussiones Mathematicae Graph Theory

For a connected graph G = (V,E), a set W ⊆ V is called a Steiner set of G if every vertex of G is contained in a Steiner W-tree of G. The Steiner number s(G) of G is the minimum cardinality of its Steiner sets and any Steiner set of cardinality s(G) is a minimum Steiner set of G. For a minimum Steiner set W of G, a subset T ⊆ W is called a forcing subset for W if W is the unique minimum Steiner set containing T. A forcing subset for W of minimum cardinality is a minimum forcing subset of W. The...

The geodetic number of strong product graphs

A.P. Santhakumaran, S.V. Ullas Chandran (2010)

Discussiones Mathematicae Graph Theory

For two vertices u and v of a connected graph G, the set I G [ u , v ] consists of all those vertices lying on u-v geodesics in G. Given a set S of vertices of G, the union of all sets I G [ u , v ] for u,v ∈ S is denoted by I G [ S ] . A set S ⊆ V(G) is a geodetic set if I G [ S ] = V ( G ) and the minimum cardinality of a geodetic set is its geodetic number g(G) of G. Bounds for the geodetic number of strong product graphs are obtainted and for several classes improved bounds and exact values are obtained.

The Gutman Index and the Edge-Wiener Index of Graphs with Given Vertex-Connectivity

Jaya Percival Mazorodze, Simon Mukwembi, Tomáš Vetrík (2016)

Discussiones Mathematicae Graph Theory

The Gutman index and the edge-Wiener index have been extensively investigated particularly in the last decade. An important stream of re- search on graph indices is to bound indices in terms of the order and other parameters of given graph. In this paper we present asymptotically sharp upper bounds on the Gutman index and the edge-Wiener index for graphs of given order and vertex-connectivity κ, where κ is a constant. Our results substantially generalize and extend known results in the area.

The independent resolving number of a graph

Gary Chartrand, Varaporn Saenpholphat, Ping Zhang (2003)

Mathematica Bohemica

For an ordered set W = { w 1 , w 2 , , w k } of vertices in a connected graph G and a vertex v of G , the code of v with respect to W is the k -vector c W ( v ) = ( d ( v , w 1 ) , d ( v , w 2 ) , , d ( v , w k ) ) . The set W is an independent resolving set for G if (1) W is independent in G and (2) distinct vertices have distinct codes with respect to W . The cardinality of a minimum independent resolving set in G is the independent resolving number i r ( G ) . We study the existence of independent resolving sets in graphs, characterize all nontrivial connected graphs G of order n with i r ( G ) = 1 , n - 1 ,...

The interval function of a connected graph and a characterization of geodetic graphs

Ladislav Nebeský (2001)

Mathematica Bohemica

The interval function (in the sense of H. M. Mulder) is an important tool for studying those properties of a connected graph that depend on the distance between vertices. An axiomatic characterization of the interval function of a connected graph was published by Nebeský in 1994. In Section 2 of the present paper, a simpler and shorter proof of that characterization will be given. In Section 3, a characterization of geodetic graphs will be established; this characterization will utilize properties...

The k -metric colorings of a graph

Futaba Fujie-Okamoto, Willem Renzema, Ping Zhang (2012)

Mathematica Bohemica

For a nontrivial connected graph G of order n , the detour distance D ( u , v ) between two vertices u and v in G is the length of a longest u - v path in G . Detour distance is a metric on the vertex set of G . For each integer k with 1 k n - 1 , a coloring c : V ( G ) is a k -metric coloring of G if | c ( u ) - c ( v ) | + D ( u , v ) k + 1 for every two distinct vertices u and v of G . The value χ m k ( c ) of a k -metric coloring c is the maximum color assigned by c to a vertex of G and the k -metric chromatic number χ m k ( G ) of G is the minimum value of a k -metric coloring of G . For every...

Currently displaying 261 – 280 of 321