Displaying 481 – 500 of 501

Showing per page

Underlying Graphs of 3-Quasi-Transitive Digraphs and 3-Transitive Digraphs

Ruixia Wang, Shiying Wang (2013)

Discussiones Mathematicae Graph Theory

A digraph is 3-quasi-transitive (resp. 3-transitive), if for any path x0x1 x2x3 of length 3, x0 and x3 are adjacent (resp. x0 dominates x3). C´esar Hern´andez-Cruz conjectured that if D is a 3-quasi-transitive digraph, then the underlying graph of D, UG(D), admits a 3-transitive orientation. In this paper, we shall prove that the conjecture is true.

Utilisation des scores dans des méthodes exactes déterminant les ordres médians de tournois

Irène Charon-Fournier, Anne Germa, Olivier Hudry (1992)

Mathématiques et Sciences Humaines

Dans cet article, nous utilisons un paramètre σ ( T ) défini à partir des scores d’un tournoi T pour déterminer les ordres médians de T . Ce paramètre évalue un éloignement entre le tournoi T et les tournois transitifs ayant le même nombre de sommets. Appelant i ( T ) le nombre minimum d’arcs à inverser pour rendre T transitif, et n le nombre de sommets de T , nous proposons d’abord deux algorithmes linéaires en n calculant i ( T ) et un ordre médian de T pour les tournois T tels que σ ( T ) soit égal à 1 ou 2 . Puis nous...

γ-Cycles And Transitivity By Monochromatic Paths In Arc-Coloured Digraphs

Enrique Casas-Bautista, Hortensia Galeana-Sánchez, Rocío Rojas-Monroy (2013)

Discussiones Mathematicae Graph Theory

We call the digraph D an m-coloured digraph if its arcs are coloured with m colours. If D is an m-coloured digraph and a ∈ A(D), colour(a) will denote the colour has been used on a. A path (or a cycle) is called monochromatic if all of its arcs are coloured alike. A γ-cycle in D is a sequence of vertices, say γ = (u0, u1, . . . , un), such that ui ≠ uj if i ≠ j and for every i ∈ 0, 1, . . . , n there is a uiui+1-monochromatic path in D and there is no ui+1ui-monochromatic path in D (the indices...

γ-Cycles In Arc-Colored Digraphs

Hortensia Galeana-Sánchez, Guadalupe Gaytán-Gómez, Rocío Rojas-Monroy (2016)

Discussiones Mathematicae Graph Theory

We call a digraph D an m-colored digraph if the arcs of D are colored with m colors. A directed path (or a directed cycle) is called monochromatic if all of its arcs are colored alike. A subdigraph H in D is called rainbow if all of its arcs have different colors. A set N ⊆ V (D) is said to be a kernel by monochromatic paths of D if it satisfies the two following conditions: for every pair of different vertices u, v ∈ N there is no monochromatic path in D between them, and for every vertex x ∈ V...

Currently displaying 481 – 500 of 501