Coûts moyens de circuits hamiltoniens de de
Let T be a hamiltonian bipartite tournament with n vertices, γ a hamiltonian directed cycle of T, and k an even number. In this paper, the following question is studied: What is the maximum intersection with γ of a directed cycle of length k? It is proved that for an even k in the range 4 ≤ k ≤ [(n+4)/2], there exists a directed cycle of length h(k), h(k) ∈ k,k-2 with and the result is best possible. In a forthcoming paper the case of directed cycles of length k, k even and k < [(n+4)/2]...
Let T be a hamiltonian bipartite tournament with n vertices, γ a hamiltonian directed cycle of T, and k an even number. In this paper the following question is studied: What is the maximum intersection with γ of a directed cycle of length k contained in T[V(γ)]? It is proved that for an even k in the range (n+6)/2 ≤ k ≤ n-2, there exists a directed cycle of length h(k), h(k) ∈ k,k-2 with and the result is best possible. In a previous paper a similar result for 4 ≤ k ≤ (n+4)/2 was proved.
If is a vertex of a digraph , then we denote by and the outdegree and the indegree of , respectively. A digraph is called regular, if there is a number such that for all vertices of . A -partite tournament is an orientation of a complete -partite graph. There are many results about directed cycles of a given length or of directed cycles with vertices from a given number of partite sets. The idea is now to combine the two properties. In this article, we examine in particular, whether...
Let D be a digraph, V(D) and A(D) will denote the sets of vertices and arcs of D, respectively. A (k,l)-kernel N of D is a k-independent set of vertices (if u,v ∈ N then d(u,v) ≥ k) and l-absorbent (if u ∈ V(D)-N then there exists v ∈ N such that d(u,v) ≤ l). A k-kernel is a (k,k-1)-kernel. A digraph D is cyclically k-partite if there exists a partition of V(D) such that every arc in D is a (mod k). We give a characterization for an unilateral digraph to be cyclically k-partite through the lengths...
Let G = (V,A) be a directed graph. With any subset X of V is associated the directed subgraph G[X] = (X,A ∩ (X×X)) of G induced by X. A subset X of V is an interval of G provided that for a,b ∈ X and x ∈ V∖X, (a,x) ∈ A if and only if (b,x) ∈ A, and similarly for (x,a) and (x,b). For example ∅, V, and {x}, where x ∈ V, are intervals of G which are the trivial intervals. A directed graph is indecomposable if all its intervals are trivial. Given an integer k > 0, a directed graph G = (V,A) is called...
For n ≥ 4, the complete n-vertex multidigraph with arc multiplicity λ is proved to have a decomposition into directed paths of arbitrarily prescribed lengths ≤ n - 1 and different from n - 2, unless n = 5, λ = 1, and all lengths are to be n - 1 = 4. For λ = 1, a more general decomposition exists; namely, up to five paths of length n - 2 can also be prescribed.
An arc decomposition of the complete digraph Kₙ into t isomorphic subdigraphs is generalized to the case where the numerical divisibility condition is not satisfied. Two sets of nearly tth parts are constructively proved to be nonempty. These are the floor tth class ( Kₙ-R)/t and the ceiling tth class ( Kₙ+S)/t, where R and S comprise (possibly copies of) arcs whose number is the smallest possible. The existence of cyclically 1-generated decompositions of Kₙ into cycles and into paths is characterized....
A digraph such that for each its vertex, vertices of the out-neighbourhood have different in-degrees and vertices of the in-neighbourhood have different out-degrees, will be called an HI-digraph. In this paper, we give a characterization of sequences of pairs of out- and in-degrees of HI-digraphs.