Remark about a construction of some tournaments points of certain projective planes
The paper studies tolerances and congruences on anticommutative conservative groupoids. These groupoids can be assigned in a one-to-one way to undirected graphs.
For each integer and each finite graph , we construct a Coxeter group and a non positively curved polygonal complex on which acts properly cocompactly, such that each polygon of has edges, and the link of each vertex of is isomorphic to . If is a “generalized -gon”, then is a Tits building modelled on a reflection group of the hyperbolic plane. We give a condition on for to be non enumerable (which is satisfied if is a thick classical generalized -gon). On the other hand,...
A directed Cayley graph is specified by a group and an identity-free generating set for this group. Vertices of are elements of and there is a directed edge from the vertex to the vertex in if and only if there is a generator such that . We study graphs for the direct product of two cyclic groups and , and the generating set . We present resolving sets which yield upper bounds on the metric dimension of these graphs for and .
We analyse the spectral phase diagram of Schrödinger operators on regular tree graphs, with the graph adjacency operator and a random potential given by random variables. The main result is a criterion for the emergence of absolutely continuous spectrum due to fluctuation-enabled resonances between distant sites. Using it we prove that for unbounded random potentials spectrum appears at arbitrarily weak disorder in an energy regime which extends beyond the spectrum of. Incorporating...
In an Artinian ring R every element of R can be expressed as the sum of two units if and only if R/J(R) does not contain a summand isomorphic to the field with two elements. This result is used to describe those finite rings R for which Γ(R) contains a Hamiltonian cycle where Γ(R) is the (simple) graph defined on the elements of R with an edge between vertices r and s if and only if r - s is invertible. It is also shown that for an Artinian ring R the number of connected components of the graph...
-graphs are a type of graphs associated to groups, which were proposed by A. Bretto and A. Faisant (2005). In this paper, we first give some theorems regarding -graphs. Then we introduce the notion of rough -graphs and investigate some important properties of these graphs.
We shall show that there exist sofic groups which are not locally embeddable into finite Moufang loops. These groups serve as counterexamples to a problem and two conjectures formulated in the paper by M. Vodička, P. Zlatoš (2019).
Let be a group and let be a finite subset. The isoperimetric method investigates the objective function , defined on the subsets with and , where is the product of by .In this paper we present all the basic facts about the isoperimetric method. We improve some of our previous results and obtain generalizations and short proofs for several known results. We also give some new applications.Some of the results obtained here will be used in coming papers to improve Kempermann structure...