Displaying 221 – 240 of 667

Showing per page

Forbidden Structures for Planar Perfect Consecutively Colourable Graphs

Marta Borowiecka-Olszewska, Ewa Drgas-Burchardt (2017)

Discussiones Mathematicae Graph Theory

A consecutive colouring of a graph is a proper edge colouring with posi- tive integers in which the colours of edges incident with each vertex form an interval of integers. The idea of this colouring was introduced in 1987 by Asratian and Kamalian under the name of interval colouring. Sevast- janov showed that the corresponding decision problem is NP-complete even restricted to the class of bipartite graphs. We focus our attention on the class of consecutively colourable graphs whose all induced...

Forbidden triples implying Hamiltonicity: for all graphs

Ralph J. Faudree, Ronald J. Gould, Michael S. Jacobson (2004)

Discussiones Mathematicae Graph Theory

In [2], Brousek characterizes all triples of graphs, G₁, G₂, G₃, with G i = K 1 , 3 for some i = 1, 2, or 3, such that all G₁G₂G₃-free graphs contain a hamiltonian cycle. In [6], Faudree, Gould, Jacobson and Lesniak consider the problem of finding triples of graphs G₁, G₂, G₃, none of which is a K 1 , s , s ≥ 3 such that G₁, G₂, G₃-free graphs of sufficiently large order contain a hamiltonian cycle. In this paper, a characterization will be given of all triples G₁, G₂, G₃ with none being K 1 , 3 , such that all G₁G₂G₃-free...

Functions on adjacent vertex degrees of trees with given degree sequence

Hua Wang (2014)

Open Mathematics

In this note we consider a discrete symmetric function f(x, y) where f ( x , a ) + f ( y , b ) f ( y , a ) + f ( x , b ) f o r a n y x y a n d a b , associated with the degrees of adjacent vertices in a tree. The extremal trees with respect to the corresponding graph invariant, defined as u v E ( T ) f ( d e g ( u ) , d e g ( v ) ) , are characterized by the “greedy tree” and “alternating greedy tree”. This is achieved through simple generalizations of previously used ideas on similar questions. As special cases, the already known extremal structures of the Randic index follow as corollaries. The extremal structures...

Generalised irredundance in graphs: Nordhaus-Gaddum bounds

Ernest J. Cockayne, Stephen Finbow (2004)

Discussiones Mathematicae Graph Theory

For each vertex s of the vertex subset S of a simple graph G, we define Boolean variables p = p(s,S), q = q(s,S) and r = r(s,S) which measure existence of three kinds of S-private neighbours (S-pns) of s. A 3-variable Boolean function f = f(p,q,r) may be considered as a compound existence property of S-pns. The subset S is called an f-set of G if f = 1 for all s ∈ S and the class of f-sets of G is denoted by Ω f ( G ) . Only 64 Boolean functions f can produce different classes Ω f ( G ) , special cases of which include...

Generalized domination, independence and irredudance in graphs

Mieczysław Borowiecki, Danuta Michalak, Elżbieta Sidorowicz (1997)

Discussiones Mathematicae Graph Theory

The purpose of this paper is to present some basic properties of 𝓟-dominating, 𝓟-independent, and 𝓟-irredundant sets in graphs which generalize well-known properties of dominating, independent and irredundant sets, respectively.

Currently displaying 221 – 240 of 667