Some Provably Hard Crossing Number Problems.
Upper and lower bounds on the total domination number of the direct product of graphs are given. The bounds involve the {2}-total domination number, the total 2-tuple domination number, and the open packing number of the factors. Using these relationships one exact total domination number is obtained. An infinite family of graphs is constructed showing that the bounds are best possible. The domination number of direct products of graphs is also bounded from below.
Let G = (V,E) be a graph. A function f : V → {-1,1} is called a bad function of G if ∑u∈NG(v) f(u) ≤ 1 for all v ∈ V where NG(v) denotes the set of neighbors of v in G. The negative decision number of G, introduced in [12], is the maximum value of ∑v∈V f(v) taken over all bad functions of G. In this paper, we present sharp upper bounds on the negative decision number of a graph in terms of its order, minimum degree, and maximum degree. We also establish a sharp Nordhaus-Gaddum-type inequality for...
It is proved that if G is multigraph with maximum degree 3, and every submultigraph of G has average degree at most 2(1/2) and is different from one forbidden configuration C⁺₄ with average degree exactly 2(1/2), then G is totally 4-choosable; that is, if every element (vertex or edge) of G is assigned a list of 4 colours, then every element can be coloured with a colour from its own list in such a way that no two adjacent or incident elements are coloured with the same colour. This shows that the...
Let be a graph of order and the spectral radius of its adjacency matrix. We extend some recent results on sufficient conditions for Hamiltonian paths and cycles in . One of the main results of the paper is the following theorem: Let
The bandwidth minimization problem is of significance in network communication and related areas. Let G be a graph of n vertices. The two-dimensional bandwidth B2(G) of G is the minimum value of the maximum distance between adjacent vertices when G is embedded into an n × n grid in the plane. As a discrete optimization problem, determining B2(G) is NP-hard in general. However, exact results for this parameter can be derived for some special classes of graphs. This paper studies the “square-root...
The bandwidth minimization problem is of significance in network communication and related areas. Let G be a graph of n vertices. The two-dimensional bandwidth B2(G) of G is the minimum value of the maximum distance between adjacent vertices when G is embedded into an n × n grid in the plane. As a discrete optimization problem, determining B2(G) is NP-hard in general. However, exact results for this parameter can be derived for some special classes of graphs. This paper studies the “square-root...
Let Δ ≥ 4 be an integer. In this note, we prove that every planar graph with maximum degree Δ and girth at least 1 Δ+46 is strong (2Δ−1)-edgecolorable, that is best possible (in terms of number of colors) as soon as G contains two adjacent vertices of degree Δ. This improves [6] when Δ ≥ 6.
In this paper we study some of the structural properties of the set of all minimal total dominating functions () of cycles and paths and introduce the idea of function reducible graphs and function separable graphs. It is proved that a function reducible graph is a function separable graph. We shall also see how the idea of function reducibility is used to study the structure of for some classes of graphs.