A note on the edge-connectivity of cages.
The independent domination number (independent number ) is the minimum (maximum) cardinality among all maximal independent sets of . Haviland (1995) conjectured that any connected regular graph of order and degree satisfies . For , the subset graph is the bipartite graph whose vertices are the - and -subsets of an element ground set where two vertices are adjacent if and only if one subset is contained in the other. In this paper, we give a sharp upper bound for and prove that...
For graphs , , , we write if for every red-blue colouring of the edge set of we have a red copy of or a blue copy of in . The size Ramsey number is the minimum number of edges of a graph such that . Erdős and Faudree proved that for the cycle of length and for matchings , the size Ramsey number . We improve their upper bound for and by showing that for and for .
Let be the graph obtained from a given graph by subdividing each edge times. Motivated by a problem raised by Igor Pak [Mixing time and long paths in graphs, in Proc. of the 13th annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2002) 321–328], we prove that, for any graph , there exist graphs with edges that are Ramsey with respect to .
Let TsH be the graph obtained from a given graph H by subdividing each edge s times. Motivated by a problem raised by Igor Pak [Mixing time and long paths in graphs, in Proc. of the 13th annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2002) 321–328], we prove that, for any graph H, there exist graphs G with O(s) edges that are Ramsey with respect to TsH.
The paper studies the bus-journey graphs in the case when they are piecewise expanding and contracting (if described by fathers-sons relations starting with the greatest independent set of nodes). This approach can make it possible to solve the minimization problem of the total service time of crews.
Let k and ℓ be positive integers with ℓ ≤ k − 2. It is proved that there exists a positive integer c depending on k and ℓ such that every graph of order (2k−1−ℓ/k)n+c contains n vertex disjoint induced subgraphs, where these subgraphs are isomorphic to each other and they are isomorphic to one of four graphs: (1) a clique of order k, (2) an independent set of order k, (3) the join of a clique of order ℓ and an independent set of order k − ℓ, or (4) the union of an independent set of order ℓ and...
The imbalance of an edge in a graph is defined as , where is the vertex degree. The irregularity of is then defined as the sum of imbalances over all edges of . This concept was introduced by Albertson who proved that (where ) and obtained stronger bounds for bipartite and triangle-free graphs. Since then a number of additional bounds were given by various authors. In this paper we prove a new upper bound, which improves a bound found by Zhou and Luo in 2008. Our bound involves the...
In this paper we survey results and open problems on the structure of additive and hereditary properties of graphs. The important role of vertex partition problems, in particular the existence of uniquely partitionable graphs and reducible properties of graphs in this structure is emphasized. Many related topics, including questions on the complexity of related problems, are investigated.