The maximum of the maximum rectilinear crossing numbers of -regular graphs of order .
A nonincreasing sequence of nonnegative integers is a graphic sequence if it is realizable by a simple graph on vertices. In this case, is referred to as a realization of . Given two graphs and , A. Busch et al. (2014) introduced the potential-Ramsey number of and , denoted by , as the smallest nonnegative integer such that for every -term graphic sequence , there is a realization of with or with , where is the complement of . For and , let be the graph obtained...
For any two graphs F1 and F2, the graph Ramsey number r(F1, F2) is the smallest positive integer N with the property that every graph on at least N vertices contains F1 or its complement contains F2 as a subgraph. In this paper, we consider the Ramsey numbers for theta-complete graphs. We determine r(θn,Km) for m = 2, 3, 4 and n > m. More specifically, we establish that r(θn,Km) = (n − 1)(m − 1) + 1 for m = 3, 4 and n > m
Bondy and Erdős [2] have conjectured that the Ramsey number for three cycles Cₖ of odd length has value r(Cₖ,Cₖ,Cₖ) = 4k-3. We give a proof that r(C₇,C₇,C₇) = 25 without using any computer support.
Let denote the minimum possible number of leaves in a tree of order and diameter Lesniak (1975) gave the lower bound for When is even, But when is odd, is smaller than in general. For example, while In this note, we determine using new ideas. We also consider the converse problem and determine the minimum possible diameter of a tree with given order and number of leaves.
A degree monotone path in a graph G is a path P such that the sequence of degrees of the vertices in the order in which they appear on P is monotonic. The length (number of vertices) of the longest degree monotone path in G is denoted by mp(G). This parameter, inspired by the well-known Erdős- Szekeres theorem, has been studied by the authors in two earlier papers. Here we consider a saturation problem for the parameter mp(G). We call G saturated if, for every edge e added to G, mp(G + e) > mp(G),...
The Wiener index W(G) of a connected graph G, introduced by Wiener in 1947, is defined as W(G) = ∑u,v∈V(G) d(u, v) where dG(u, v) is the distance between vertices u and v of G. The Steiner distance in a graph, introduced by Chartrand et al. in 1989, is a natural generalization of the concept of classical graph distance. For a connected graph G of order at least 2 and S ⊆ V (G), the Steiner distance d(S) of the vertices of S is the minimum size of a connected subgraph whose vertex set is S. We now...
If a graph G has a drawing in the plane in such a way that every two crossings are independent, then we call G a plane graph with independent crossings or IC-planar graph for short. In this paper, the structure of IC-planar graphs with minimum degree at least two or three is studied. By applying their structural results, we prove that the edge chromatic number of G is Δ if Δ ≥ 8, the list edge (resp. list total) chromatic number of G is Δ (resp. Δ + 1) if Δ ≥ 14 and the linear arboricity of G is...
We prove a structure theorem asserting that each superflat graph is tree-decomposable in a very nice way. As a consequence we fully determine the spectrum functions of theories of superflat graphs.